
ANNUAL JOURNAL OF ELECTRONICS, 2015, ISSN 1314-0078

278

Approaches to Increasing the Quality and
Reliability in the Field of Design Patterns

Dimitrichka Zheleva Nikolaeva and Violeta Todorova Bozhikova

Abstract – The report presents two techniques in software
development based on Design Patterns: programming,
providing reliable functioning of the programming systems
(PPRF) and reuse of software production (RSP). These are the
findings of an analysis made in the field of Design Patterns.
The report explores six indicators: the actuality of the topic,
analysis of the approaches and methods for the development
of Design Patterns, determining the advantages and
disadvantages of implementing Design Patterns, study of
Design Patterns according to their use and according to the
purpose of software development, analysis of the
programming languages used to develop Software Templates.
They are important for the development of Software Based on
Software Templates. In conclusion the advantages of using
Design Patterns are summarized and an application is made
for future projects.

Keywords – Software Design Patterns, Software Re-Use,
Software Quality

I. INTRODUCTION

Over the past 80 years, information technologies have

been developing rapidly. Programming systems and
products have become increasingly complex and this is a
prerequisite for creating of new efficient technologies for
development. In the seventies of the last century the
development of software based on templates arise. [20]
They have a concept for solving common problems in the
field of object-oriented modeling. They are designed to
provide standardized and efficient solutions for
architectural and conceptual problems in computer
programming.

The report consists of four parts. The second provides
analysis, which includes a study of six indicators: the
actuality of the topic, analysis of the approaches and
methods for the development of Design Patterns,
determining the advantages and disadvantages of
implementing Design Patterns, study of Design Patterns
according to their use and according to the purpose of
software development, analysis of the programming
languages used to develop Software Templates. The results
are summarized graphically and tabularly. The third part
discusses the techniques used in software development
based on Software Template. The conclusion supports the

need to study and implement approaches in the field of
Design Patterns for improving the quality and reliability of
software systems and products.

II. ANALYSIS OF THE LITERATURE LINKED TO
THE SOFTWARE PATTERNS DESIGN.

The report presents the results of ongoing research of the

first author in the field of "Software development using
design patterns." Until now, 107 literature sources have
been analyzed, the most important of which are cited in this
publication. The large number of publications on the
subject clearly demonstrates the topicality of the subject
(Fig.1. Grouping of literature and Fig.2 Literature issued/
published in the period 1993-2014 in field of Design
Patterns).

Fig.1. Grouping of literature

Fig.2. Literature issued/ published in the period 1993-2014 in

field of Design Patterns

Apart from, confirming the actuality of the topic, the
indicators subject of research aim to:
1) Analysis of approaches and methods for the
development of Design Patterns;
2) Determining the advantages and disadvantages of
implementing Design Patterns;
3) Study of Design Patterns according to their use;
4) Study of Design Patterns according to the purpose of
software development;
5) Analysis of the programming languages used to develop
Software Templates.

The conclusions made are important for the development
of Software Based on Software Templates. The results of
the analysis are presented in table and graphically as
follows:

D. Nikolaeva is with the Department of Computer Science and
Technologies, Faculty of Computer Technique and Automation,
Technical University - Varna, 1 Studentska str., 9010 Varna,
Bulgaria, e-mail: dima.nikolaeva@abv.bg

V. Bozhikova is with the Department of Computer Science
and Technologies, Faculty of Computer Technique and
Automation, Technical University - Varna, 1 Studentska str.,
9010 Varna, Bulgaria, e-mail: e-mail:
vbojikova2000@yahoo.com

ANNUAL JOURNAL OF ELECTRONICS, 2015

 279

TABLE 1.SUMMARY ANALYSIS OF DESIGN PATTERNS

1) Analysis of approaches and methods for the
development of Design Pattern

• Strategies for tolerating software errors.
• A structural approach to the assessment of the design of model-

oriented and object-oriented projects [1]
• Parametric Approach and approach check
• Creating a methodology for reuse, storage and application of

code
• Development of components for reuse (componentization) [2]
• Development of libraries for re-use and easy configuration [10]
• Methodology for building dynamic binding of components [16]
• An approach for modeling complex business domains [5]
• An approach for detecting design patterns to support reverse

engineering [4], [6], [9]
• A method of creating software models, leading to repeatedly

used and cost-efficient software, the basis for this process are
the so called mind maps

• An approach to develop Detector clones as a prefix to the
Eclipse IDE

2) Determining the advantages and disadvantages of
implementing Design Patterns

Advantages
• Lead to automating applications[1]
• Create and maintain complex, large-scale, flexible systems [17]
• Lead to re-use and develop components and libraries for re-use
• Simplify design and optimize code
• Develop a high structural level
• Increase the level of conceptual thinking [19]
• Lead to better decisions
• Create a common basis for comparison and detection of Design

Patterns [11]
• Applicable (give a quick access to the database, help to develop

games, etc.).
• Used for exchange of experience (help programmers, designers,

architects and analysts for the successful use of Design Patterns
in combination with a wide range of programming languages)

• Lead to the integration of the Object-Oriented, Event-Based
and Aspect-Oriented Programming

Disadvantages
• The architectures of some models are not optimal
• It is not clear which model should be applied in which situations
• Novice designers err in their application
• The documentation describing the patterns is not accurate,

leading to different interpretations by the designers who use it
• Lack adequate functionality, which limits the use of design

patterns within a session
• Similar code segments that appear in the source code, increase

both the productivity and the probability of error propagation
3) Study of the Design Patterns according to their

application (covering all literary sources):
A. total (for all Design Patterns) and
B. in groups according to the purpose that the

relevant Design Patterns
(B.1. total and B.2. in percent)

3)A.

Design Patterns (DP) Use of DP DP according to
purpose

Memento 23 Behavioral patterns
Flyweight 24 Structural patterns
Iterator 28 Behavioral patterns
Chain of Responsibility 29 Behavioral patterns
Interpreter 29 Behavioral patterns

Design Patterns (DP) Use of DP DP (purpose)
Builder 31 Creational patterns
Visitor 32 Behavioral patterns
Prototype 33 Creational patterns
Bridge 35 Structural patterns
Decorator 35 Structural patterns
Mediator 35 Behavioral patterns
Façade 36 Structural patterns
State 38 Behavioral patterns
Command 40 Behavioral patterns
Template method 40 Behavioral patterns
Composite 42 Structural patterns
Adapter 43 Structural patterns
Proxy 43 Structural patterns
Abstract Factory 46 Creational patterns
Observer 47 Behavioral patterns
Singleton 48 Creational patterns
Factory method 49 Creational patterns
Strategy 49 Behavioral patterns

DP according to the
purpose 3) B.1. 3) B.2.

Behavioral patterns 390 46 %
Structural patterns 258 30 %
Creational patterns 207 24 %
4) Study of the Design Patterns according to the purpose of
software development (only theses discussed):

A. Delivering reliable operation; [7], [14], [16]
B. Achieving quality; [8], [11], [12]
C. Reuse of software production; [3]
D. Evaluation of the final software [19]

5) Analysis of programming languages for the development
of Software Templates:

A. (Java);
B. (C++);
C. (C#);
D. (Xml);
E. (Other)

4) 5) Design Patterns A B C D A B C D E
Abstract Factory 1 1 6 2 26 13 21 5 3
Factory method 2 1 7 1 27 9 22 9 7
Builder 1 0 4 3 18 7 14 4 4
Prototype 1 1 3 1 16 7 15 5 1
Singleton 1 2 8 2 23 12 19 9 7
Adapter 2 1 7 1 23 13 19 6 6
Bridge 1 2 4 1 16 11 17 6 2
Composite 2 1 6 2 25 11 21 7 4
Decorator 1 1 5 1 22 11 19 4 2
Façade 1 1 6 1 20 10 17 6 4
Flyweight 0 1 4 1 13 8 12 5 2
Proxy 1 1 6 1 23 11 17 6 5
Chain of Responsibility 0 1 4 1 18 10 15 3 1
Command 2 1 7 2 25 13 15 6 5
Interpreter 1 1 3 1 17 6 13 4 2
Iterator 0 0 5 1 15 8 12 3 2
Mediator 0 2 5 2 22 11 15 6 3
Memento 1 1 3 1 13 7 11 3 1
Observer 1 1 6 3 27 13 21 7 3
State 1 1 7 1 20 10 15 5 2
Strategy 2 2 6 2 26 15 24 10 4
Template method 1 1 7 1 24 10 17 5 3
Visitor 0 2 4 1 16 11 15 5 1

ANNUAL JOURNAL OF ELECTRONICS, 2015

 280

Fig.3. Use according to the purpose of the software

development

Fig.4. Use of programming languages

 The results are important for the development of an

approach based on the Design Patterns. After summarizing
the data several conclusions can be made:

1) The issue of software templates is up to date, due to
the increased interest in recent years.

2) Software Based on Software Templates is
practically-oriented and despite its shortcomings, the
software templates are preferred to create reliability and
quality software. [10]

3) Software Templates allow for re-use, reducing the
time and money to develop. Through software
programming templates automate labor.

4) The most used by Software Templates: Strategy,
Factory method and Singleton, but at least are: Memento,
Flyweight and Iterator. The most used group of Design
Patterns: Behavioral patterns - 46%, followed by Structural
patterns - 30%, and the smallest is the percentage of
Creational patterns - 24%.

5) Java is the most used programming language for
creating Factory method and Observer. Programming
languages: C++, C # and Xml are most often used to create
Strategy. The language most used to create applications
with Design Patterns in Java, followed by C # and C ++,
the least used is Xml.

From the conclusions in 2) and 3) we can conclude that
there are two main techniques for developing software-
based software templates: programming, providing reliable
functioning of the programming systems (PPRF) [1], [4],
[6], [9] and re-use in the software production (RSP) [2],
[5], [10], [16].

III. TECHNIQUES USED IN SOFTWARE

DEVELOPMENT BASE DESIGN PATTERNS

The development of quality software is associated with
construction and validation processes. Construction
processes are linked to Fault avoidance (prevention): avoid
defects and Fault tolerance: software development with an
acceptable level of error. The validation processes are
related to the validation of software created and
accordingly to: Fault removal: detection and elimination of
errors and Fault / failure forecasting giving a forecast. Such

processes also take place in the creation a Software Based
on Software Templates.

The technique PPRF, used for developing software-
based Software Templates is associated with an assessment
of: Reliability - frequency of system failures; the collapse
of the system - working situation unusual response
software; defect - a programming error in the input data
leading to collapse. PPRF affects three modern approaches
to develop Software Templates (Fig.5):

 Development of software to minimize the defects in it
(Fault avoidance);

 Software development with an acceptable level of error
(Fault tolerance);

 Defensive programming.

Fig.5. Approaches used in the technique PPRF

The essence of the first approach (Fault avoidance) is to
reduce errors in software development. Fault tolerance is
software that is designed to keep working even if there are
errors. Protective programming (Defensive programming)
is an approach that incorporates mechanisms to detect,
assess and eliminate potential errors. Validation processes:
Fault / failure forecasting and Fault removal are features of
Fault tolerance, while Fault removal is a function of
Defensive programming, due to the specifics in the design
of software. Fault tolerance principles are: Reliable
operation - the principle of repetition of elements; a
different number of components can be applied for the
same activity each one of them performing certain
functions, the results are compared and the program
continues with the frequent result. The principle is also
known as N-version programming in software results;
Recovery Blocks - software units comprising an alternative
to re-code execution failover; Exception handlers -
components for handling exceptions /a message to suspend
the process. Features Fault tolerance: Forecast and detect
defects (Fault / failure forecasting and Fault removal);
Assess the damage after a system crash; Disaster recovery;
Locate and remove defects causing the collapse of the
system. Principles of Fault-free software are: Create precise
specifications; Use of a design allowing the encapsulation
of the information; Mechanisms for assuring quality
software; Planning and system testing.

The second technique RSP is a combination of planned
and systematic activities aimed at using existing software
components. Their practical implementation would be
successful if they met certain requirements: program
components must be designed so that they are readily
adjustable to consider the cloning process to regulate the
mechanism for (establishing the variable) compiling the
names of the change to prevent errors, components should
be portable. As a result of the analysis in Table 1.Summary

PROGRAMMING, PROVIDING RELIABLE
FUNCTIONING OF THE PROGRAMMING

SYSTEMS

DEFENSIVE
ROGRAMMING

FAULT
AVOIDANCE

FAULT TOLERANT

ANNUAL JOURNAL OF ELECTRONICS, 2015

 281

analysis of Design Patterns we can conclude that in the
second RSP technology to develop software based on the
Software Templates (reuse) four groups of trends have be
registered:

 Design of libraries of components for re-use;
 Create reusable components;
 Establishment of standards for integrated library

usage of the elements for reuse;
 Create models for the process of re-use and

appropriate software tools that support the
development of and / or reuse.

Fig.6. Trends used in RSP technique

The reuse of existing software components has several
advantages: increasing the productivity of programmers
work to improve the quality of the developed software,
quickly create new products as it reduces development
time. The success of this approach is due to the techniques
of storing and retrieving components. Search mechanisms,
are usually associated with a keyword search, text
descriptions of natural language faceted technique by
drawing descriptions from a different perspective. The
principle of operation of the techniques is different, but
what unites them is the ability to improve the quality and
reliability of software. In PPRF technique this is achieved
through different approaches to reduce software errors,
while in RSP technique re-use of software components is
implemented whose properties are already checked. The
choice of approach depends on the application domain and
the specific requirements for the created software.

IV. CONCLUSION AND FUTURE PROGRESS

The report summarizes the techniques for developing

software based on Design Patterns (PPRF and RSP). For
this purpose, a large amount of literature in the field of
Software Design Patterns has been examined. Multi criteria
analysis has been conducted and results interesting for
further study have been received and presented. It must be
emphasized that the use of Software Design Patterns on the
one hand saves time and resources for development,
increasing productivity of programmer’s work and on the
other it leads to minimizing programming errors both
resulting in quality and reliability of the developed
software. Our research in the field of Design Patterns
continues. The idea is to explore and develop an approach
to software development based on a hybrid software
template. The creation of such an approach is related to
solving a number of research problems, both
methodological and practical.

REFERENCES

[1] Yacoub, S.M., Pattern-Oriented Analysis and Design
(POAD): A Methodology for Software Development - Department
of Computer Science and Electrical Engineering, West Virginia
University Morgantown, 1999
[2] Althammer, Egb., Reflection Patterns in the Context of Object
and Component Technology - der Universität Konstanz,
Mathematisch-Naturwissenschaftliche Sektion, Fachbereich
Informatik und Informationswissenschaft Konstanz, 2001
[3] Jamal, S., Pattern-Based Approach for Object Oriented
Software Design - Department of Computer Science K.U.Leuven,
Leuven, Belgium, August 18, 2003
[4] Maggioni, St., Design Pattern Detection and Software
Architecture Reconstruction: an Integrated Approach based on
Software Micro-structures, Dipartimento di Informatica,
Sistemistica e Comunicazione, Universita degli Studi di Milano-
Bicocca, 2008
[5] Hoftmann, Kl. B., Domain-driven design in action, Designing
an identity provider, Department of Computer Science, University
of Copenhagen, spring 2009
[6] Rasool, G., Customizable Feature based Design Pattern
Recognition Integrating Multiple Techniques, Doctoral
dissertation Fakultät für Informatik und Automatisierung
Technische Universität Ilmenau, October, 2010
[7] Qi, X., Language Support For Reliable, Extensible Large-
Scale Software Systems, Doctoral dissertation, Cornell University,
2010
[8] Abramov, J., A Patten Based Approach for Design and
Implementation of Secure Databases, Doctoral dissertation, BEN-
GURION UNIVERSITY OF THE NEGEV, November, 2010
[9] Dong, J., Zhao, Y., & Peng, T., A review of design pattern
mining techniques. International Journal of Software Engineering
and Knowledge Engineering, 19(06), 823-855, 2009
[10] BYNENS, M., A System of Patterns for the Design of
Reusable Aspect Libraries, Doctoral dissertation, © Katholieke
Universiteit Leuven – Faculty of Engineering, Belgium, 2011
[11] Binun, A., High Accuracy Design Pattern
Detection, Doctoral dissertation, Universitäts-und
Landesbibliothek Bonn, 2012
[12] Ferenc, R., Advances in Software Product Quality
Measurement and its Applications in Software Evolution,
Doctoral dissertation, University of Szeged, 2014
[13] Ebnenasir, A., & Cheng, B. H. A Pattern-Based Approach
for Modeling and Analysis of Error Recovery, 2007
[14] Pawson, R., Naked objects, Doctoral dissertation, Trinity
College, Dublin June 2004
[15] Zibran, M. F., Management Aspects of Software Clone
Detection, Doctoral dissertation, University of Saskatchewan
Saskatoon, June 2014
[16] Rasool, G., A. I., & At. M., A Comparative Study on Results
of Design Patterns Recovery Tools World Applied Sciences
Journal, 28(9), 2013
[17] Vernon, V., Implementing domain-driven design. Addison-
Wesley, 2013
[18] Khwaja, S. A., Towards Design Pattern Definition Language
(DPDL), Doctoral dissertation, King Fahd University of
Petroleum and Minerals, 2010
[19] Trad, A., & Trad, C., Audit, Control and Monitoring Design
Patterns (ACMDP) for Autonomous Robust Systems
(ARS), International Journal of Advanced Robotic Systems, 2(1),
25-38, 2005
[20] Erich Gamma et al, Design Patterns: Elements of Reusable
Object-Oriented Software, ISBN: 0201633612, Addison-Wesley
Publ. Co., January 15, 1995

REUSE IN SOFTWARE PRODUCTION

CREATE MODELS
FOR THE

PROCESS OF RE-
USE AND

APPROPRIATE
SOFTWARE

TOOLS

ESTABLISHM
ENT OF

STANDARDS
FOR

INTEGRATED
LIBRARY

DESIGN OF
LIBRARIES

FOR RE-USE

CREATE
REUSABLE

COMPONENTS

