
ANNUAL JOURNAL OF ELECTRONICS, 2015, ISSN 1314-0078

131

Blended Approach
in the Embedded Software Design

Ivan Georgiev Buliev, Teodor Borislavov Grigorov and Jordan Nikolov Kolev

Abstract – The main purpose of the proposed approach is to

facilitate and accelerate the embedded software development
using a multiplatform software development environment and
the development of virtual devices drivers for screen
visualization and interactive models for I/O components of an
embedded system. The whole development may take place on
the PC in a simulation mode. Finally the virtual drivers are
replaced by the actual subroutines for the real devices and the
software is recompiled, programmed and run in the
embedded system itself.

Keywords – Embedded software development, virtual

drivers, software simulation

I. INTRODUCTION

A. Challenges, faced by the embedded SW design

 Embedded systems are everywhere around us – from
mass products like smartphones and numerous other
gadgets, through commercial, industrial, and military
applications, to high-level scientific and research
instrumentation. Regardless of the application specifics, the
embedded systems have many common features and meet
more or less common requirements. Among them are: real
time implementations, flexible specifications, versatile
platforms, multiple periphery, harsh environment, short
time-to-market, cost restrictions, user friendly interface is a
must (where applicable), highly competitive market, etc.
 Although the traditional design flow and available tools
for hardware and software development are continuously
refined, the need of further improvement in the field is out
of doubt.

B. Traditional design flow and tools

 During the years, for various reasons, the C
programming language has been widely accepted as the
high-level language for programming Embedded systems.
The traditional embedded software design usually involves
a kind of Integrated Development Environment (IDE). The
IDEs usually offer a plain text editor for code writing,
extended with language-dependent syntax highlighting, an
optimised C/C++ compiler, and a debugger able to connect
and “speak” to the target system via different types of
programming and debugging interfaces. Commercial
products offer fast and convenient software design flows.

Open source IDEs and compilation and debugging
toolchains are also available. The usual sequence of actions
is shown in the diagram in Figure 1.

Fig. 1. Traditional design flow of the embedded software

development.

 Although the process seems straight forward, a number
of particularities usually hinder the fast development and
require careful and sometimes very detailed testing and
step-by-step debugging. The compilation takes time. The
programming of the flash memory also takes time and
depending on the complexity and the program size, this
time may be significant. Organising the debugging, setting
up the break points, the code execution and the step-by-step
execution through the various debug interfaces (JTAG,
SWD, BDM, HID-based, etc.) are in general also time
consuming. In some cases, as for example applications with
externally imposed real-time functionality, the debugging
is not only difficult but also even impossible.
 In comparison to the programming for personal
computers, perhaps two main differences can be
distinguished. The embedded systems monitor and control
separate either single-wire or grouped number of digital
inputs and outputs but not necessarily multiples of eight,
while the smallest container in ANSI C is the character, i.e.
the byte. The other particularity is the presence in the
personal computers and the absence in the embedded
systems of the standard input/output console and the
keyboard. Based on the teaching experience of the authors,
these two differences are in the same time the main
challenges in front of the young embedded software
developers, usually having experience in programming
personal computers.
 In the same time, those who understand and adopt the
differences start combining the two types of experience in
their favour. Some advanced concepts from the personal
computer software domain seem partially applicable in the
embedded software design and presented below.

C. Attractive concepts from the personal computer
programming

 The personal computer programming continuously
generates new ideas and concepts. Normally, they concern
and are applied for computer systems of higher complexity,
running operating systems (OS). Some of them however
seem attractive for the embedded software design, as well.

I. Buliev is with the Department of Electronic Engineering and
Microelectronics, Faculty of Electronics, Technical University of
Varna, 1 Studentska str., 9010 Varna, Bulgaria, e-mail:
ivangbuliev@gmail.com

T. Grigorov and J. Kolev are with Micon K Ltd, 42A
Papadopulu str., 9010 Varna, e-mail: jkolev@ieee.bg

ANNUAL JOURNAL OF ELECTRONICS, 2015

 132

The application-driver model
 Using of drivers is usually related to applications, which
are run from a given operating system. This is also valid for
the embedded software development for more complicated
designs [1]. However, simpler embedded system designs
could also benefit. If their firmware were structured
appropriately, changing a single system component would
not need much effort. For example replacing a
monochromatic LCD with a true colour RGB display
would be done fast, if the display output functions are
based on a limited set of low-level functions, which will
only need to be replaced. This is actually the generic idea
of using drivers.

Virtualization
 Virtual device drivers are a particular type of device
drivers [2], [3]. They are used to replace and emulate real
hardware device, especially in the quite popular recently
virtual environment. In such an environment, a file can be
interpreted as a CDROM drive with inserted disk in it for
example. One could perhaps not find immediate application
of the virtual drivers in an embedded system programming
but we actually developed this idea and we present some
results in the next sections of this paper.

Multi-platform SW development environments
 The times when the only programming language for
embedded systems was Assembler are far in the past now.
Developers still use it but the high-level programming
languages give much greater flexibility today. Among
them, the C/C++ language is undoubtedly recognized as the
most popular. The ANSI version of the C/C++ language is
usually extended by the manufacturers to better meet the
microcontroller particularities. Missing data types, as for
example – bit, are usually added in a non-standard way.
This makes the developed C/C++ application code actually
non-portable and moving from one architecture to another
is not straightforward.
 Recently multi-platform compilers and libraries have
been developed and offered as commercial products.
Limited but open source versions are also released. One
such platform that allows OS-independent application
programming is Qt [4]. Again the presence of an OS is a
prerequisite, and direct using of Qt for embedded
programming is not worth in case of simple applications.
 The advantages of the three above-mentioned
technologies were exploited. In the present paper we
present the developed by us approach for faster embedded
software development and verification and we provide
some successful examples.

II. BLENDED APPROACH FOR EMBEDDED
SOFTWARE DESIGN

A. Combining advanced practices

 The main idea in our approach is to transform to a large
extent the embedded software development into a software
development for a personal computer.
 One of the basic differences between the embedded
systems and the universal computers is in the variety and
the number of peripheral devices. A common personal

computer has a screen as an output device and a keyboard
and mouse as input devices. The embedded systems can
have as I/O devices buttons, LEDs, LED-based indicators,
intelligent LCD displays, touch screen panels, etc. but they
may have also a plenty of sensors connected and providing
different type of data.
 No matter how many and different the peripheral devices
are, almost always they can be attractively visualized on
the screen of the personal computers. The input devices can
be emulated with the help of the keyboard and the mouse.
The sensor outputs may be modeled as sliders, the relay or
transistor outputs may be manually switched on or off by
clicking on small push buttons, etc.

B. Practical virtualization in the embedded SW design

 Therefore, we suggest using of a multiplatform software
development environment, allowing programing of
graphical user interface (GUIs) applications and the
development of virtual devices drivers and screen
visualization and interaction models for the different I/O
components of an embedded system. Then the whole
development may take place on the PC in a simulation
mode. At the end the virtual drivers are replaced by the
actual subroutines for the real system devices and the
software is recompiled, programmed and run in the
embedded system itself. Using ANSI C/C++ for the
common part of the code is a requirement but it is not a
significant limitation in comparison with the significant
acceleration in the software development process, by
avoiding the continuous time-consuming uC
reprogramming and stiff debugging. Conditional
compilation using different keys for the PC and the
embedded system provides the means for creating even a
common project. The diagram in Figure 2 illustrates the
main concept.

Fig. 2. Diagram, presenting the main concept

 One time-consuming task in the software development is
the organising and the rendering the various GUI screens.
Using the virtualization approach we could cope much
faster that initially planned. Figure 3 shows one of the GUI

ANNUAL JOURNAL OF ELECTRONICS, 2015

 133

screens as designed in the PC application. Figure 4 shows
the real screen of the manufactured equipment.

Fig. 3. A screenshot from the PC simulator application

Fig. 4. The same screen from Fig. 3 on the display

of the real device.

 The main slow-down however in the software
development for this task was due to the duration of the
real experiments. Significant time was needed for the real
cooling or warming of the chamber. What we did was to
virtualise the sensors and simulate their output with the
help of common graphical controls in Windows – sliders,
buttons, etc. (Figure 3).

This allowed to faster reach (although simulated) the
conditions, requiring system response and thus provided
means for much faster behavioural algorithm testing.
 The project trees for the PC simulator application and
the embedded application follow the concept from Figure 2
and are shown in Figure 5a.
 The projects use the same header files and the same C
source files. In Qt the C source files are #included within
the C++ source files. The project files for Qt and MPLABX
are absolutely independent. Specific and different C
compiler keys were defined in each of them. This allowed
the inclusion/exclusion of code segments in the common
files depending on the platform for which the compilation
took place. Figure 5b illustrates the conditional code
compilation in case of PIC microcontroller or personal
computer.
 Porting the software from the simulator to the real device
took about half a day. Final software refinements took few
more days. Thanks to the applied blended approach, a
significant reduction in the development time was
achieved.
 The suggested approach has been successfully applied in
three different applications, provided as examples in the
next section.

III. SUCCESSFUL IMPLEMENTATION EXAMPLES

A. Programmable thermostatic chamber

 Physical experiments are performed at a wide range of
the ambient temperature. The programmable thermostatic
chamber that was developed has a working space of 50 dm3
where a physical equipment and instrumentation can be
placed. The temperature of the working space is controlled
versus time in a range from -150C to +600C by a program.

Fig. 5. Project trees for the PC simulator application and the embedded application (a), and part of the code illustrating the different
low-level implementation of writing to an I2C EEPROM (b).

// E2P related functions
int WriteE2P(short addr, char n, char *src)
{
 int res = GSUCCESS;

#ifdef WINEBOTSIM
 // QT
 for (int i=0; i<n; i++)
 e2pMemory[addr+i] = src[i];
#else
 // MPLABX
 char *p, i;
 uint8_t AddrH, AddrL;

 AddrH = addr/256;
 AddrL = addr%256;
 p = src;

 Start_my_I2C3();
 res = Write_address_I2C3(EEPROM|EWRITE);
 res = Send_data_I2C3(AddrH);
 res = Send_data_I2C3(AddrL);
 for(i=0; i<n; i++)
 res = Send_data_I2C3(*p++);
 Stop_my_I2C3();
#endif
 return res;
}

(a) (b)

ANNUAL JOURNAL OF ELECTRONICS, 2015

 134

The program can be either entered manually at the
device LCD touch panel or loaded from external computer
as a preliminary prepared file. The number of time-
temperature steps can be up to 255 with a total duration up
to one month. A log file with temperature and time data can
be recorded on an external computer.

B. ECETD

 ECETD (Electro-Chemical Etching of Track Detectors)
is intended for processing (etching) of general-purpose
polycarbon compact discs (CD). The material of the CDs,
i.e. polycarbon, being exposed to ionization radiation,
particularly caused by Radon decay, keeps the tracks of the
resulting alpha particles. The intensity of tracks is an
integral estimate of the intensity of the ionization radiation
on the place where the CDs are stored. This can be used for
monitoring of ambient radiation in living areas. The tracks
are very small and can be visualized by using of electron
beam microscopy only. The etching process realized in
ECETD makes the tracks visible by optical microscopes or
even with unaided eyes. ECETD consists of a HV digital
synthesizer (up to 4 kV, 6 kHz), electronic control, power
supply modules and thermostabilized by Peltier
coolers/heaters processing platform. Controlled parameters
are: the processing high voltage, etching current,
processing platform temperature, and duration of etching.
The parameters are using the combination of a coloured
LCD and a touch panel on top of it. An activity log can be
created on an external computer through a USB
connection. The manufactured device is shown in Figure 6.

Fig. 6. The ECETD device.

 The software development also benefited significantly
from the application of the above-described approach. GUI
screens composition, touch screen input and device
reactions were preliminary programmed and tested in a
simulation mode and later ported to the embedded device.

C. Wine dispensers

 Much more complex network system of wine dispensers
was developed also with the partial support of the
presented approach. Such automated wine dispensers are
used in restaurants, wine shops, bars, wine tasting rooms,
etc. They offer to the customers the opportunity to purchase
small doses wine either for degustation (e.g. 20-30ml) or a
full glass for pleasant consuming. The wine is dispensed

from original bottles, which are being kept at the most
suitable temperature for the respective wine sort. To
preserve the wine in the bottles, to avoid oxygenation and
prevent it from losing its genuine flavour, taste and colour,
the wine is dispensed out from the bottle with the help of
low-pressure nitrogen or argon gases. The tasks performed
by the embedded controller include: temperature control of
bottle section, gas pressure control, volume control of
dispensed doses, RFID access control, etc. Main computer
keeps a database for the wine bottles installed in the
dispensers as well as for those stored in the shop.

Fig. 7. The wine dispenser

 The challenge in the software development was not only
the design of the GUI screens and the main algorithm
programming but also the implementation of the network
communication, allowing the simultaneous work of a
number of wine dispensers connected to a main computer.
The communication protocol was tested and tuned in a
simulation environment, using two personal computers, one
of them playing the role of the dispenser.

IV. CONCLUSIONS

 The successful implementation of the three different
products undoubtedly confirms not only the feasibility but
also the benefits from the approaching the problems using a
combination of simulations and real implementations and
testing.
 Qt and MPLAB proved to be able to be used in common
projects. It would be also of interest to investigate and
confirm the possibility to use together for example Qt and
Eclipse and GCC for ARM development. Commercial
IDEs (e.g. Freescale’s CodeWarrior, TI’s Code Composer)
are based on Eclipse could eventually bring benefits as
well.

REFERENCES

[1] Embedded Systems Architecture, Device Drivers - Part 1:
Interrupt Handling, EDN Network, March 05, 2013,
http://www.edn.com/design/systems-design/4408329/ Embedded-
Systems-Architecture--Device-Drivers---Part-1--Interrupt-
Handling
[2] G. Heiser, The Role of Virtualization in Embedded Systems,
First Workshop on Isolation and Integration in Embedded
Systems (IIES’08) April 1, 2008, Glasgow, UK
[3] A. Kadav, M. M. Swift, Understanding Modern Device
Drivers, ASPLOS’12, March 3−7, 2012, London, England, UK
[4] Qt Framework (http://www.qt.io)

