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Abstract – The following paper focuses on an energy 

reduction technique in embedded systems called Static Power 
Management (SPM). The SPM is applied at compile time and 
aims at powering and/or gating off unused and inactive 
peripheral modules in the system. By investigating a 
particular example we try to gain data for future optimization 
algorithms. 
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I. INTRODUCTION 

 
 Embedded systems executing bare-metal and single-
threaded firmware (i.e. no OS) expose a good level of 
compile-time predictability. One could take advantage of 
this feature and use it for energy reduction. This is where 
the Static Power Management, or SPM, could be used [1]. 
Unused peripheral modules in a microcontroller or in an 
embedded system can be gated off to reduce dynamic 
power consumption. Some implementations allow for a 
complete power down of a module. The latter reduces static 
and leakage consumption. 
 Theoretically an SPM algorithm can be implemented 
easily – whenever there is no hardware access to a 
peripheral, it can be switched off. But practically this is a 
daunting task. The time of the powering on and off, as well 
as the initialization of the module, could seriously harm the 
energy optimization. The purpose of this paper is to assess 
an application before and after using an SPM.      

 
II. TEST SETUP 

 
A. Basic explanation 
 
 For a test system we have chosen a typical closed-loop 
embedded system for object control. The block diagram is 
shown in Figure 1. Here we have a source of data that 
could be analog and/or digital. Usually the input data is fed 
into a converter that transforms it to a set of digital values. 
Those values are then processed and sent to an output 
converter. The signals from this converter are used by an 
actuator that controls the object of interest.  
 Having in mind this theoretical setup, we have used an 
ARM Cortex-M4 based microcontroller (Texas 
Instruments’ LM4F232H5QD) to develop such a system. It 

is shown in Figure 2. As it can be seen from the figure 
there is no object to be controlled. This is because it is 
irrelevant from software point of view. Furthermore this 
would allow us to modify the processing pseudo-algorithm 
for our needs.   
 

 
Fig. 1. Closed-loop embedded system. 

 

 
 

Fig. 2. System under test. 
 

 The firmware that we are testing reflects the closed-loop 
concepts. The original (non-instrumented) program is 
shown below with pseudo-code. The main loop of the 
program is  
 
init( ); 
 
while(1){ 
 
set_gpio_pin( ); 
 
adc_val = measure_adc( ); 
pwm_val = process_data(adc_val); 
set_pwm(pwm_val); 
printf_uart(msg); 
 
clear_gpio_pin( ); 
 
delay_ms(1); 
} 
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separated with a toggle of a GPIO pin and a small delay for 
oscilloscope synchronization. Along with the current 
measurements, we are able to estimate the energy 
consumption for one period of the firmware. The algorithm 
starts with ADC measurements that represent the input data 
conversion part. The analog values are kept constant during 
the measurements. They can be adjusted by the 
potentiometer POT in Figure 2. The converted samples are 
fed to a processing function. The calculations that we 
perform are dummy. Then the processed data is passed to a 
function that sets the duty cycle of a PWM module 
correspondingly. The PWM is the output converter. It is 
monitored by an oscilloscope to make sure that the 
firmware is alive during the measurements. Between the 
processing part and the PWM module we have inserted 
some asynchronous data communication (UART) because 
usually such systems are controlled remotely. 
    
B. Used modules 
 
 To make a conclusion of the above-mentioned 
peripherals we will list them. Those will be the modules 
that will be switched on/off during the experiment. They 
are shown in Table 1. Unfortunately the manufacturer does 
not provide information about the current consumption of 
the separate modules. This is normal since a 
microcontroller is a software controlled device. Some 
currents are provided under some specific frequencies and 
conditions (such as all peripherals on, all peripherals off, 
sleep modes, etc). Therefore we cannot anticipate the 
current consumption of a separate module. That’s why we 
have chosen to measure the current before and after the 
optimization, as many researchers in the same field do. 
 

TABLE 1. USED MODULES 
 

Peripheral Type Function  
ADC Analog-to-

digital 
converter 

Converts analog 
values to digital 
values 

ARM Cortex-
M4 

Microprocessor Executes 
instructions 

PWM Pulse-Width-
Modulator 

Generates 
voltage impulses 
with variable 
length 

UART Universal 
Asynchronous 
Receiver-
Transmitter 

Communication 
module for 
sending/receiving 
bytes on the 
RS232 interface 

Timer Timer Asserts interrupts 
at given time 
periods. 

FLASH Memory Program memory 
SRAM Memory Data memory 
GPIO General-

Purpose Input 
Output 

Module for 
software control 
of the pin levels 
in a micro-
controller 

 
 

 

III. STATIC POWER MANAGEMENT 
 
 A typical SPM algorithm for optimizing energy 
consumption checks at compile time for parts in the 
firmware code where certain modules of the 
microcontroller are inactive or are not used at all. 
Depending on the power management features, the clock 
signal supplied to the module could be gated off or even its 
entire supply voltage could be switched off [2]. The first 
case allows the programmer to initialize the module only 
once and reduce its dynamic power consumption during the 
inactive periods. The second case requires multiple 
initialization and will lead to dynamic power reduction, as 
well as leakage power, during the inactive periods [3] [4].  
 In this case study we focus on 4 variations of the 
application. The first three investigate optimization 
dependence on inactive-active transition time of the 
module, while the fourth one concerns optimizations with 
changes in the execution model of the firmware. 
 There are three possible scenarios that could affect the 
SPM optimization: 
 

 The execution time of the main processing tEXEC is 
less or equal to the execution time of the functions 
that make the active-inactive transitions tA-IT  

ITAEXEC tt −≤                                                (1) 
 
 Time tEXEC is considerably greater than tA-IT 

              ITAEXEC tt −>>                                              (2) 
 
 Time tEXEC is considerably greater than tA-IT and 

interrupts from timers are used 
              ITAEXEC tt −>> **                                          (3) 
 
 The instrumented program differs from the original one 
by the additional API calls for the state transitions. The 
code is shown below. Other high-level source code 
transformations exist and are revised in [5]. 
 
init( ); 
 
while(1){ 
 

set_gpio_pin( ); 
 
init_adc( ); 
adc_val = measure_adc( ); 
disable_adc( ); 
 
pwm_val = process_data(adc_val); 
set_pwm(pwm_val); 
 
init_printf( ); 
printf_uart(msg); 
disable_printf( ); 
 
clear_gpio_pin( ); 
 
delay_ms(1); 

} 
 
 As it can be seen, the PWM module is not turned off as 
this would affect the control of the object. On the other 
hand the ADC could be turned off because no conversion 
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takes place while the bodies of the other functions are 
being executed. The only negative effect in this case could 
be slower response time which should be assessed by the 
developer as whether is admissible or not. 
 The origin of the instructions and data of the 
microprocessor could also affect the energy consumption. 
For this reason we have setup another experiment and have 
investigated execution from RAM and ROM. 
Modifications to the start-up code and linker script are 
required. To make a more general conclusion we have used 
several microcontrollers (LM4F232, LPC1114, 
MSP430FR5739). The experiment is described later in this 
section.      
 The compiler used is a GCC cross compiler. The target 
architecture is ARM Cortex-M and the cross compiler 
prefix is ‘arm-none-eabi-‘. The LM4F232 tests were 
performed with the following command line parameters: 
 
‐mthumb  ‐mfloat‐abi=softfp  ‐Os  ‐ffunction‐sections  ‐
fdata‐sections  ‐MD  ‐std=c99  ‐Wall  ‐pedantic  ‐
DPART_LM4F232H5QD ‐c 
 
 The LPC1114 and MSP430FR5739 tests were performed 
with: 
 
‐D__REDLIB__ ‐D__USE_CMSIS ‐DDEBUG ‐D__CODE_RED ‐O0  ‐
g3  ‐Wall  ‐c  ‐fmessage‐length=0  ‐fno‐builtin  ‐
ffunction‐sections  ‐fdata‐sections  ‐mcpu=cortex‐m0  ‐
mthumb ‐MMD ‐MP 
 
 As it can be seen from the above, in the first case we use 
optimizations for size of the code and in the second one – 
no optimizations at all. Those parameters were taken from 
the respective manufacturer’s integrated environments and 
were not changed. The effects of the optimization levels are 
irrelevant to this experiment. 
 The linker used is a GCC’s LD. Again, the prefix is 
‘arm-none-eabi-‘. The linker script changes include: 
- relocation of the .text section to SRAM, right next to the 
.data and .bss sections; 
- relocation of the vector table in SRAM; 
- changes in the start-up code to copy the .text section and 
vector table to SRAM. 
 The address range of the SRAM was provided in the 
respective microcontroller datasheets.  
 
A. Measurement equipment and statistical analysis. 
 
 The measurement equipment used in this experiment is a 
shunt-resistor and a differential amplifier based one. More 
information about it is published in [6]. The error of the Idd 
current readings is 0,33 % in the range 0 ÷ 300 mA. 
 The number of measurements performed was once per 
each test case. As mentioned before, when we talk about 
optimizations, seldom is someone doing absolute 
measurements. What we need here is one measurement 
before and one measurement after the optimization.    
 
B. Execution time tEXEC commensurable with transition time 
tA-IT 
 
 The original program was measured to consume 112 µJ 
per one period (one while(1) loop). The instrumented 

program in the first case had the process_data( ) function 
simplified down to one line of code with a dummy 
calculation. As expected, the resulting SPM optimization 
yielded 144 µJ per period (increase of 29 %). The time 
period was increased as well (52 %). Therefore we can 
conclude that the optimization was unsuccessful.      
 
C. Execution time tEXEC greater than transition time tA-IT 
 
 In the second example we increased the time of the 
process_data( ) function by adding more computations. 
Thusly we simulate negligible time for the transitions. The 
original program now consumes 15 555 µJ per cycle. With 
the help of SPM this was reduced to 14 256 µJ (8,4 %). 
The time was increased with 0,6 %. 
 
D. Execution time tEXEC greater than transition time tA-IT 
using timers. 
 
 In the third case we used timers that trigger wake events 
every 0.5 s. During the rest of the time the system is 
sleeping. It appears that the wake-up of the system costs 
additional 5066 µJ which increased the consumption of the 
original program to 20 621 µJ per cycle. Despite this, the 
SPM was successful – the energy was reduced to 18343 µJ 
(11 %) per cycle. The increase in time was 1,3 %.   
 Figure 3 shows graphical view of the results. With SPM 
the execution time of one period is inevitably increased. 
The API functions that are inserted for clock gating and 
power switching introduce this overhead.   
 
 

 
 

Fig. 3. Time period and energy consumption change before and 
after applying SPM. 

 
E. SPM with change in the execution model. 
 
 Changing the instructions’ address of execution may 
lead to energy reduction. This is dictated by the fact that 
volatile and non-volatile memories have different static and 
dynamic power consumption, as well as access times. The 
most common scenario in an ARM Cortex-M based 
microcontroller is to execute parts of the program in read-
only and random access memory. The other concept is to 
store the program in ROM and at start-up relocate it to 
RAM. We used two more microcontrollers for the 
experiment. Their architectures are listed in Table 2.   
 Every instruction has a load memory address (LMA) and 
a virtual memory address (VMA) [7]. The LMA is the 
address at which the instruction is stored. In our case this is 
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the read-only memory. The VMA is the address of the 
instruction when it is executed. 
 

TABLE 2. TARGET MICROCONTROLLERS 
 

Microcontroller Microprocessor Architecture ROM  
LM4F232 ARM Cortex-

M4 
Harvard Flash 

LPC1114 ARM Cortex-
M0 

Von 
Neumann 

Flash 

MSP430FR5739 MSP430 Von 
Neumann 

FRAM 

 
 Here we investigate execution from ROM and RAM. 
The RAM case is accomplished by modifying the start-up 
code of the firmware to relocate the vector table. The linker 
script is modified to have the appropriate LMA and VMA 
for each microcontroller and its respective address map. 
Once set-up, the addresses of the running code were 
verified with a debug adapter. 
 The tests were conducted with 3 different applications: 
 

 Computationally intensive (processData) 
 Memory access intensive (copyBuffer) 
 External communication intensive (sendOnUART) 

 
 One might think that executing code from non-volatile 
memory consumes more energy than the case with the 
volatile one. The test, however, yielded different results 
(shown in Table 3). It can be seen that the technology of 
the non-volatile memory could make read/write accesses 
faster and more energy efficient. A proof for this is the 
communication application run on an MSP430FR5739 
where the execution from RAM consumes more energy 
compared to the ROM execution. We also have 4 cases 
where there is little or no difference for the memory used. 

 
TABLE 3. ENERGY CONSUMPTION OF CODE EXECUTED FROM ROM 

AND RAM 
 

Arch 
 
 

Test 

Harvard 
(SRAM 
+ Flash) 

Von 
Neumann 
(SRAM 
+ Flash) 

Von 
Neumann 
(SRAM 

+ FRAM) 
processData ЕFLASH≈ESR

AM 

ЕFLASH>ESR

AM 
ЕFRAM=ESRAM 

copyBuffer ЕFLASH>ESR

AM 
ЕFLASH>ESR

AM 
ЕFRAM=ESRAM 

sendOnUART ЕFLASH>ESR

AM 
ЕFLASH=ESR

AM 
ЕFRAM<ESRAM 

 
IV. CONCLUSION 

  
 The work presented in this paper could help in the 
making of an SPM optimization algorithm. The important 
information gathered here is that the energy reduction by 
the means of static power management comes always at a 
prize and that would be the execution time of the 
application. However we still consider this as a successful 
method because for a small time degradation we achieve 
decent energy reduction (values close to 10 %). 
Furthermore the SPM algorithm should provide the 
programmer with means of excluding modules from the 

optimization as this might interfere with the system’s 
behavior (in our case this was the PWM module).  
 The SPM should also be supplied with information about 
the execution times of the application of interest and the 
active-inactive transition times. This would allow the 
prediction of the optimization outcome. In the cases where 
the A-IT times are greater or equal to the main 
application’s duration the optimization will fail. Otherwise 
the SPM will succeed.   
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