
ANNUAL JOURNAL OF ELECTRONICS, 2015, ISSN 1314-0078

120

Power Management in Embedded Systems: A Static
Power Approach

Lubomir Valeriev Bogdanov and Racho Marinov Ivanov

Abstract – The following paper focuses on an energy

reduction technique in embedded systems called Static Power
Management (SPM). The SPM is applied at compile time and
aims at powering and/or gating off unused and inactive
peripheral modules in the system. By investigating a
particular example we try to gain data for future optimization
algorithms.

Keywords – static power management, SPM, embedded
systems, energy reduction.

I. INTRODUCTION

 Embedded systems executing bare-metal and single-
threaded firmware (i.e. no OS) expose a good level of
compile-time predictability. One could take advantage of
this feature and use it for energy reduction. This is where
the Static Power Management, or SPM, could be used [1].
Unused peripheral modules in a microcontroller or in an
embedded system can be gated off to reduce dynamic
power consumption. Some implementations allow for a
complete power down of a module. The latter reduces static
and leakage consumption.
 Theoretically an SPM algorithm can be implemented
easily – whenever there is no hardware access to a
peripheral, it can be switched off. But practically this is a
daunting task. The time of the powering on and off, as well
as the initialization of the module, could seriously harm the
energy optimization. The purpose of this paper is to assess
an application before and after using an SPM.

II. TEST SETUP

A. Basic explanation

 For a test system we have chosen a typical closed-loop
embedded system for object control. The block diagram is
shown in Figure 1. Here we have a source of data that
could be analog and/or digital. Usually the input data is fed
into a converter that transforms it to a set of digital values.
Those values are then processed and sent to an output
converter. The signals from this converter are used by an
actuator that controls the object of interest.
 Having in mind this theoretical setup, we have used an
ARM Cortex-M4 based microcontroller (Texas
Instruments’ LM4F232H5QD) to develop such a system. It

is shown in Figure 2. As it can be seen from the figure
there is no object to be controlled. This is because it is
irrelevant from software point of view. Furthermore this
would allow us to modify the processing pseudo-algorithm
for our needs.

Fig. 1. Closed-loop embedded system.

Fig. 2. System under test.

 The firmware that we are testing reflects the closed-loop
concepts. The original (non-instrumented) program is
shown below with pseudo-code. The main loop of the
program is

init();

while(1){

set_gpio_pin();

adc_val = measure_adc();
pwm_val = process_data(adc_val);
set_pwm(pwm_val);
printf_uart(msg);

clear_gpio_pin();

delay_ms(1);
}

R. Ivanov is with the Department of Electronics, Faculty of
Electronic Engineering and Technologies, Technical University -
Sofia, 8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria, e-mail:
r.ivanov@tu-sofia.bg

L. Bogdanov is with the Department of Electronics, Faculty of
Electronic Engineering and Technologies, Technical University -
Sofia, 8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria, e-mail:
lbogdanov@tu-sofia.bg

ANNUAL JOURNAL OF ELECTRONICS, 2015

 121

separated with a toggle of a GPIO pin and a small delay for
oscilloscope synchronization. Along with the current
measurements, we are able to estimate the energy
consumption for one period of the firmware. The algorithm
starts with ADC measurements that represent the input data
conversion part. The analog values are kept constant during
the measurements. They can be adjusted by the
potentiometer POT in Figure 2. The converted samples are
fed to a processing function. The calculations that we
perform are dummy. Then the processed data is passed to a
function that sets the duty cycle of a PWM module
correspondingly. The PWM is the output converter. It is
monitored by an oscilloscope to make sure that the
firmware is alive during the measurements. Between the
processing part and the PWM module we have inserted
some asynchronous data communication (UART) because
usually such systems are controlled remotely.

B. Used modules

 To make a conclusion of the above-mentioned
peripherals we will list them. Those will be the modules
that will be switched on/off during the experiment. They
are shown in Table 1. Unfortunately the manufacturer does
not provide information about the current consumption of
the separate modules. This is normal since a
microcontroller is a software controlled device. Some
currents are provided under some specific frequencies and
conditions (such as all peripherals on, all peripherals off,
sleep modes, etc). Therefore we cannot anticipate the
current consumption of a separate module. That’s why we
have chosen to measure the current before and after the
optimization, as many researchers in the same field do.

TABLE 1. USED MODULES

Peripheral Type Function
ADC Analog-to-

digital
converter

Converts analog
values to digital
values

ARM Cortex-
M4

Microprocessor Executes
instructions

PWM Pulse-Width-
Modulator

Generates
voltage impulses
with variable
length

UART Universal
Asynchronous
Receiver-
Transmitter

Communication
module for
sending/receiving
bytes on the
RS232 interface

Timer Timer Asserts interrupts
at given time
periods.

FLASH Memory Program memory
SRAM Memory Data memory
GPIO General-

Purpose Input
Output

Module for
software control
of the pin levels
in a micro-
controller

III. STATIC POWER MANAGEMENT

 A typical SPM algorithm for optimizing energy
consumption checks at compile time for parts in the
firmware code where certain modules of the
microcontroller are inactive or are not used at all.
Depending on the power management features, the clock
signal supplied to the module could be gated off or even its
entire supply voltage could be switched off [2]. The first
case allows the programmer to initialize the module only
once and reduce its dynamic power consumption during the
inactive periods. The second case requires multiple
initialization and will lead to dynamic power reduction, as
well as leakage power, during the inactive periods [3] [4].
 In this case study we focus on 4 variations of the
application. The first three investigate optimization
dependence on inactive-active transition time of the
module, while the fourth one concerns optimizations with
changes in the execution model of the firmware.
 There are three possible scenarios that could affect the
SPM optimization:

 The execution time of the main processing tEXEC is
less or equal to the execution time of the functions
that make the active-inactive transitions tA-IT

ITAEXEC tt −≤ (1)

 Time tEXEC is considerably greater than tA-IT

 ITAEXEC tt −>> (2)

 Time tEXEC is considerably greater than tA-IT and

interrupts from timers are used
 ITAEXEC tt −>> ** (3)

 The instrumented program differs from the original one
by the additional API calls for the state transitions. The
code is shown below. Other high-level source code
transformations exist and are revised in [5].

init();

while(1){

set_gpio_pin();

init_adc();
adc_val = measure_adc();
disable_adc();

pwm_val = process_data(adc_val);
set_pwm(pwm_val);

init_printf();
printf_uart(msg);
disable_printf();

clear_gpio_pin();

delay_ms(1);

}

 As it can be seen, the PWM module is not turned off as
this would affect the control of the object. On the other
hand the ADC could be turned off because no conversion

ANNUAL JOURNAL OF ELECTRONICS, 2015

 122

takes place while the bodies of the other functions are
being executed. The only negative effect in this case could
be slower response time which should be assessed by the
developer as whether is admissible or not.
 The origin of the instructions and data of the
microprocessor could also affect the energy consumption.
For this reason we have setup another experiment and have
investigated execution from RAM and ROM.
Modifications to the start-up code and linker script are
required. To make a more general conclusion we have used
several microcontrollers (LM4F232, LPC1114,
MSP430FR5739). The experiment is described later in this
section.
 The compiler used is a GCC cross compiler. The target
architecture is ARM Cortex-M and the cross compiler
prefix is ‘arm-none-eabi-‘. The LM4F232 tests were
performed with the following command line parameters:

‐mthumb ‐mfloat‐abi=softfp ‐Os ‐ffunction‐sections ‐
fdata‐sections ‐MD ‐std=c99 ‐Wall ‐pedantic ‐
DPART_LM4F232H5QD ‐c

 The LPC1114 and MSP430FR5739 tests were performed
with:

‐D__REDLIB__ ‐D__USE_CMSIS ‐DDEBUG ‐D__CODE_RED ‐O0 ‐
g3 ‐Wall ‐c ‐fmessage‐length=0 ‐fno‐builtin ‐
ffunction‐sections ‐fdata‐sections ‐mcpu=cortex‐m0 ‐
mthumb ‐MMD ‐MP

 As it can be seen from the above, in the first case we use
optimizations for size of the code and in the second one –
no optimizations at all. Those parameters were taken from
the respective manufacturer’s integrated environments and
were not changed. The effects of the optimization levels are
irrelevant to this experiment.
 The linker used is a GCC’s LD. Again, the prefix is
‘arm-none-eabi-‘. The linker script changes include:
- relocation of the .text section to SRAM, right next to the
.data and .bss sections;
- relocation of the vector table in SRAM;
- changes in the start-up code to copy the .text section and
vector table to SRAM.
 The address range of the SRAM was provided in the
respective microcontroller datasheets.

A. Measurement equipment and statistical analysis.

 The measurement equipment used in this experiment is a
shunt-resistor and a differential amplifier based one. More
information about it is published in [6]. The error of the Idd
current readings is 0,33 % in the range 0 ÷ 300 mA.
 The number of measurements performed was once per
each test case. As mentioned before, when we talk about
optimizations, seldom is someone doing absolute
measurements. What we need here is one measurement
before and one measurement after the optimization.

B. Execution time tEXEC commensurable with transition time
tA-IT

 The original program was measured to consume 112 µJ
per one period (one while(1) loop). The instrumented

program in the first case had the process_data() function
simplified down to one line of code with a dummy
calculation. As expected, the resulting SPM optimization
yielded 144 µJ per period (increase of 29 %). The time
period was increased as well (52 %). Therefore we can
conclude that the optimization was unsuccessful.

C. Execution time tEXEC greater than transition time tA-IT

 In the second example we increased the time of the
process_data() function by adding more computations.
Thusly we simulate negligible time for the transitions. The
original program now consumes 15 555 µJ per cycle. With
the help of SPM this was reduced to 14 256 µJ (8,4 %).
The time was increased with 0,6 %.

D. Execution time tEXEC greater than transition time tA-IT
using timers.

 In the third case we used timers that trigger wake events
every 0.5 s. During the rest of the time the system is
sleeping. It appears that the wake-up of the system costs
additional 5066 µJ which increased the consumption of the
original program to 20 621 µJ per cycle. Despite this, the
SPM was successful – the energy was reduced to 18343 µJ
(11 %) per cycle. The increase in time was 1,3 %.
 Figure 3 shows graphical view of the results. With SPM
the execution time of one period is inevitably increased.
The API functions that are inserted for clock gating and
power switching introduce this overhead.

Fig. 3. Time period and energy consumption change before and
after applying SPM.

E. SPM with change in the execution model.

 Changing the instructions’ address of execution may
lead to energy reduction. This is dictated by the fact that
volatile and non-volatile memories have different static and
dynamic power consumption, as well as access times. The
most common scenario in an ARM Cortex-M based
microcontroller is to execute parts of the program in read-
only and random access memory. The other concept is to
store the program in ROM and at start-up relocate it to
RAM. We used two more microcontrollers for the
experiment. Their architectures are listed in Table 2.
 Every instruction has a load memory address (LMA) and
a virtual memory address (VMA) [7]. The LMA is the
address at which the instruction is stored. In our case this is

ANNUAL JOURNAL OF ELECTRONICS, 2015

 123

the read-only memory. The VMA is the address of the
instruction when it is executed.

TABLE 2. TARGET MICROCONTROLLERS

Microcontroller Microprocessor Architecture ROM
LM4F232 ARM Cortex-

M4
Harvard Flash

LPC1114 ARM Cortex-
M0

Von
Neumann

Flash

MSP430FR5739 MSP430 Von
Neumann

FRAM

 Here we investigate execution from ROM and RAM.
The RAM case is accomplished by modifying the start-up
code of the firmware to relocate the vector table. The linker
script is modified to have the appropriate LMA and VMA
for each microcontroller and its respective address map.
Once set-up, the addresses of the running code were
verified with a debug adapter.
 The tests were conducted with 3 different applications:

 Computationally intensive (processData)
 Memory access intensive (copyBuffer)
 External communication intensive (sendOnUART)

 One might think that executing code from non-volatile
memory consumes more energy than the case with the
volatile one. The test, however, yielded different results
(shown in Table 3). It can be seen that the technology of
the non-volatile memory could make read/write accesses
faster and more energy efficient. A proof for this is the
communication application run on an MSP430FR5739
where the execution from RAM consumes more energy
compared to the ROM execution. We also have 4 cases
where there is little or no difference for the memory used.

TABLE 3. ENERGY CONSUMPTION OF CODE EXECUTED FROM ROM

AND RAM

Arch

Test

Harvard
(SRAM
+ Flash)

Von
Neumann
(SRAM
+ Flash)

Von
Neumann
(SRAM

+ FRAM)
processData ЕFLASH≈ESR

AM

ЕFLASH>ESR

AM
ЕFRAM=ESRAM

copyBuffer ЕFLASH>ESR

AM
ЕFLASH>ESR

AM
ЕFRAM=ESRAM

sendOnUART ЕFLASH>ESR

AM
ЕFLASH=ESR

AM
ЕFRAM<ESRAM

IV. CONCLUSION

 The work presented in this paper could help in the
making of an SPM optimization algorithm. The important
information gathered here is that the energy reduction by
the means of static power management comes always at a
prize and that would be the execution time of the
application. However we still consider this as a successful
method because for a small time degradation we achieve
decent energy reduction (values close to 10 %).
Furthermore the SPM algorithm should provide the
programmer with means of excluding modules from the

optimization as this might interfere with the system’s
behavior (in our case this was the PWM module).
 The SPM should also be supplied with information about
the execution times of the application of interest and the
active-inactive transition times. This would allow the
prediction of the optimization outcome. In the cases where
the A-IT times are greater or equal to the main
application’s duration the optimization will fail. Otherwise
the SPM will succeed.

REFERENCES

[1] W. Chedid, C. Yu. Survey on Power Management Techniques
for Energy Efficient Computer Systems, Cleveland State
University, 2002.
[2] ARM926EJ-S Technical Reference Manual, ARM Limited,
2008.
[3] F. Shearer. Power Management in Mobile Devices, Elsevier
Inc., 2008.
[4] T. Gloekler, H. Meyr. Design of Energy-Efficient Application-
Specific Instruction Set Processors (ASIPs), Kluwer Academic
Publishers, 2004
[5] C. Hsu. Compiler-directed dynamic voltage and frequency
scaling for CPU power and energy reduction, PhD thesis, New
Jersey, 2003.
[6] L. Bogdanov. Embedded System For Consumption
Investigation Of Function Calls With The Optimization Program
Powot, Techsys Conference, Plovdiv, 2013, Book1, p.149.
[7] S. Chamberlain, I. Taylor. The GNU linker, Free Software
Foundation Inc., 2013.

