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Integration of Soft Errors in Functional Safety: 
A Conceptual Study 
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Abstract - Embedded systems are used for both safety and 

non-safety critical applications. Safety critical systems must 
have a very low failure rate, as a failure can cause injury or 
even death. This paper presents soft errors as a cause for 
failure. Soft errors are systematic failures that lead to bit-flips 
in registers or other memory regions and affect the software 
in execution. The soft error and its detection techniques are 
linked to requirements imposed by the functional safety 
standards. 
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1. INTRODUCTION 

 Embedded systems are used more and more for different 
types of applications, e.g. brake-by-wire, video streaming, 
drones, etc. From a safety point of view, those applications 
can be divided into two categories: safety critical or non-
safety critical applications. Safety critical systems are 
systems whose actions can decide over life, injury or even 
death. Non-safety critical systems are often infotainment 
systems. 
 A safety critical system, as any system, will fail once in 
a while. Such a failure can have many causes: a software 
bug, resistor short-circuit, rising temperature, etc. In this 
paper, the soft error is presented as a cause of failure. A 
soft error is a disturbance of hardware caused by external 
factors which affect the software in execution. These 
external factors can be radiation, fast temperature increase, 
etc. If the software is not aware of the occurrence of a soft 
error, the program memory can be corrupted leading to 
unstable behavior and unpredictable states. When using 
critical hardware components this can possibly lead to very 
dangerous situations. 
 The next two sections will discuss the two main domains 
of the research, respectively functional safety and soft 
errors. Then we will present some links between the two 
domains and use those links to join the domain of soft 
errors with that of functional safety. To conclude, future 
work is presented and conclusions are drawn. 
 

II. FUNCTIONAL SAFETY 
  
 Embedded systems used as safety critical systems must 
comply with a functional safety standard, whose goal is to 
reduce the risk of physical injury or damage to health of 
people either directly or indirectly. This section will 
discuss the generic functional standard IEC 61508 and 
some differences made by more domain specific functional 
safety standards. 

2.1 Demystifying IEC 61508  

 The most generic functional safety standard is 
IEC 61508. As described by [1] and [2], it is an “umbrella” 
document covering multiple industries and applications. Its 
basic purpose is to create requirements intended to achieve 
reliable systems that either work properly or fail in a 
predictable manner. It is based on two concepts on which 
we will elaborate in the following sections: 
• The Safety Life-Cycle, a detailed engineering 

design process which reduces failures due to 
systematic errors. 

• The Safety Integrity Levels, quantified levels of 
failure rates. 

2.1.1 Safety Life-Cycle 
  
 The Safety Life-Cycle is a model to eliminate systematic 
errors. IEC 61508 defines systematic errors as errors that 
lead to failures that are deterministically related to a certain 
cause. They are typically design mistakes. Software errors 
are considered systematic errors. 
 

 

Concept

Hazard and Risk analysis

Safety requirements

Planning and Realization

Installation, 
commissioning

Operation, maintenance, 
repair

Modification

Decommissioning

D
oc

um
en

ta
tio

n

Fu
nc

tio
na

l S
af

et
y 

as
se

ss
m

en
t

V
er

ifi
ca

tio
n

 

Fig. 1. Safety Life-Cycle 

 The Safety Life-Cycle addresses these errors by 
providing a classical, step-sequential waterfall engineering 
process. As Fig. 1 shows, it starts with the concept of the 
product and ends at its decommissioning. Each phase has to 
be documented and verified before moving to the next one. 
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2.1.2 Safety Integrity Level 
  
 Next to systematic failures, IEC 61508 also addresses 
random hardware failures. These are failures attributable to 
specific components and can be quantified. These 
quantifications result in a failure rate. The failure rates of 
components can be found in external or in-house failure 
rate databases or can be estimated using mathematical 
models. Once known, they help to predict the performance 
of the system. 
 IEC 61508 uses the concept of Safety Integrity 
Levels (SIL) to express excellence of the performance of 
components and the systems. The idea is to divide the 
“spectrum” of integrity into four discrete levels and then 
lay down requirements for each level. The higher the SIL, 
the more stringent the requirements. For IEC 61508 (and 
many other standards) the four levels are given in Table 1. 
  

TABLE 1 SAFETY INTEGRITY LEVELS 
 

SIL High Demand  
(dangerous failures/hr) 

Low Demand 
(PFD) 

4 ≥ 10-9 to < 10-8 ≥ 10-5 to < 10-4 
3 ≥ 10-8 to < 10-7 ≥ 10-4 to < 10-3 
2 ≥ 10-7 to < 10-6 ≥ 10-3 to < 10-2 
1 ≥ 10-6 to < 10-5 ≥ 10-2 to < 10-1 

  
 A distinction between high demand and low demand 
systems must be made. For high demand systems, e.g. car 
brakes, it is necessary to know the failure rate per hour 
since there is a high probability of suffering the hazard 
immediately each failure occurs. High demand systems are 
defined as systems that are used more than once per year. 
Low demand systems are used less than once per year. For 
low demand systems the failure rate alone is of little use 
since the hazard is not incurred immediately each failure 
occurs. The demand of the system is infrequent, so failures 
may well be dormant. Therefore low demand systems are 
characterized using the probability of failure on demand 
(PFD), it is necessary to know the chance of failure when 
you actually need the system. 
 
2.2 Specific Industries 
  
 To compensate the generic character of IEC 61508, 
many industry domains have created their own functional 
safety standard, starting from IEC 61508. 

• Medical: the medical domain has a general 
functional safety standard: IEC 60601 [3], which 
describes all requirements to build a complete 
medical system. Recently, IEC 62304 has 
emerged as a standard to describe the software 
development processes for medical systems. A 
difference between IEC 61508 and IEC 60601 is 
that IEC 60601 does not use SIL to categorize 
different medical systems. 

• Railway: the railway domain has three standards, 
EN 50126 which describes Reliability, 
Availability, Maintainability and Safety; 
EN 50128 [4] describes the software development 
processes; and EN 50129 describes System 
Safety. A difference between the EN 5012X and 

IEC 61508 is the introduction of Software Safety 
Integrity Levels (SSIL) by the EN 5012X series. 

III. SOFT ERRORS 

 This section discusses the second domain of our 
research: the soft error. First the main causes of the soft 
error are presented and secondly the possible effects of a 
soft error on the embedded system are listed. 
3.1 Cause 
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Fig. 2. Cause and Effect of a Soft Error 

 Fig. 2 depicts the two main causes of soft errors: the 
manufacturers, symbolized by the graph ‘lowering the 
supply voltage’, and the work environment, symbolized by 
the electromagnetic wave. 
 One cause of a soft error is the current trend followed by 
manufacturers. To satisfy their customers, manufacturers of 
embedded systems or components used by embedded 
systems have decreased the supply voltage, decreased the 
size… of those systems. While this has many advantages, 
e.g. increased battery lifetime, increased transistor density 
so the same die area can house more computing power… it 
also has one big disadvantage: the devices are now much 
more susceptible to soft errors. 
 Another cause of soft errors is the work environment of 
the embedded system, which is nowadays filled with 
radiation emitted from other electrical appliances, WiFi 
hotspots, natural background radiation, contaminated 
packaging, etc. 
 The radiation leads to highly energized particles that can 
pass through the embedded system, affecting its hardware. 
As described by Baumann [5], the passing particle can 
create a short pulse which can flip a transistor from open to 
close or vice versa. Due to the decreasing scale and supply 
voltage of the embedded system, the energy needed by the 
particle to flip the transistor has decreased, leading to a 
higher occurrence of soft errors. 
  
3.2 Effects 
  
 Fig. 2 shows the primary result of a soft error: a bit of a 
memory location is flipped. That faulty bit does not 
necessarily have an effect on the system.  
Fig. 3 is a simplified adaptation of the flowchart provided 
by Mukherjee [6] and shows how certain conditions have 
to hold before the bit-flip affects the system or the software 
in execution.  
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 The first condition is that the faulty bit has to be read. 
Since soft errors are transient errors, overwriting the bit 
will discard the previous value, masking the bit-flip. 
 Secondly the bit has to be an Architectural Correct 
Execution or ACE bit. An ACE bit is a bit necessary for 
correct execution, e.g. a bit from the program counter. If a 
bit is un-ACE, thus unnecessary for correct execution, it 
cannot affect the system or software. An example of an un-
ACE bit is a bit of the branch predictor. A branch predictor 
is a structure that tries to predict which branch has to be 
taken based on previous decisions. If a bit is flipped in this 
structure, or any other prediction structure, the performance 
of the system may be affected, but it will not affect correct 
execution.  
 If both conditions hold, the faulty bit is read and it is an 
ACE bit, the bit-flip will affect the software in execution. 
The effect on the software largely depends on the location 
of the bit-flip: Main Memory, General Purpose Register, 
Program Counter or Stack Pointer. Generally speaking, the 
effects can be divided into two categories: 

• Data flow corruption, leading to wrong 
intermediary and output values. 

• Control flow corruption, affecting the execution 
order of the instructions. A control flow error 
leads to a jump to unintended instruction. 
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Fig. 3. Simplified flowchart to determine if the Bit-flip will affect 
the software. 

 Embedded systems are often used to control parts of its 
environment, an actuator, a servomotor... through I/O. This 
I/O is often memory mapped in the Main Memory of the 
embedded system. A bit-flip affecting a memory mapped 
I/O register may not affect the software in execution, but 

can affect the environment, e.g. controlling an actuator 
when it is actually prohibited. This can create very 
dangerous situations! 
 

IV. INTEGRATION 
  
 To be able to join soft errors and functional safety, soft 
errors must be classified as systematic or random hardware 
failure. The failure to take into account is not the failure of 
the software, but the bit-flip since the software only fails 
due to the occurrence of a bit-flip. 
 To be able to classify the bit-flip, we took a look at the 
definitions for the failures given by IEC 61508: 

• A systematic failure is a failure related in a 
deterministic way to a certain cause, which 
can only be eliminated by a modification of 
the design or of the manufacturing process, 
operational procedures or other relevant 
factors. 

• A random hardware failure is a failure 
occurring at a random time, which results 
from one or more degradation mechanisms. 

 By analyzing the definitions, we conclude that a soft 
error is a systematic error. The bit-flip can always be traced 
back to a certain cause, be it e.g. EMI or rising 
temperature, and it can only be eliminated by a design 
modification. 
 
4.1 Reducing the failure rate 
  

  
Fig. 5. Cost of soft error detection and recovery 
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 Functional safety is about reducing the risk of system 
failure. Soft Errors play a role in the failure rate of the 
device, so detecting and recovering from them will reduce 
the rate. Adding a detection and recovery technique 
reduces the number of soft errors that have an effect on the 
software, resulting in a reduced failure rate for the system.  
 Detecting and recovering from soft errors can be 
hardware-based or software-based. As Fig. 5 shows, 
detecting soft errors through software is more cost 
efficient. Hardware-based means adding components, e.g. a 
shield, to the PCB, which means this must be added for 
each product. This represents a nearly constant cost per 
product. Software-based detection techniques represent a 
high cost at development time, but once the software is 
completed it can be applied to each product, lowering the 
cost significantly for each product sold. Therefore future 
research will focus on software implemented detection and 
recovery techniques. 
 A second reason to focus on software implemented 
techniques is to ease compliance with functional safety 
standards. IEC 61508 states that: System software should 
include software for diagnosing faults in the system 
hardware, error detection for communication links and 
online detection of the application of software modules. 
The software in execution should be tested for control and 
data flow. Since data and control flow corruption are 
effects of a soft error, adding a software implemented 
detection and recovery technique ensures those corruptions 
are detected, and thus helps compliance with IEC 61508. 
  

V. FUTURE WORK 
  
 Future research will focus on software implemented 
detection and recovery techniques or software implemented 
fault tolerance (SWIFT). Fig. 4 gives an overview of 
existing SWIFT techniques. The techniques have been 
grouped by their ability. The left group of techniques all 
have their specific function, e.g. SIED is meant to detect 
control flow errors and duplication is used to detect data 
flow errors. The right group of techniques detect and 
recover from the effects of the soft error, e.g. the diverse 
programming techniques use multiple versions of the 
program and a voter to decide on the correct result, 
masking the effect of the soft error.  
 First we will further complete the list by performing a 
literature study.  
 Once the list of existing SWIFT techniques is more or 
less complete, research will focus on implementing the 
techniques while complying with the rules of functional 
safety. Although soft errors and its detection techniques 
can theoretically be joined with functional safety, research 
will have to determine if this can be translated in practice. 
Software implemented techniques must comply with the 
software rules imposed by functional safety. Functional 
safety standards demand the use of a programming 
language subset, to force the programming language to be 
fully and unambiguously defined. Moreover, the standards 
demand the use of a coding standard and demand the 
limitation of certain programming constructs, e.g. pointers. 
These rules could make it impossible or very hard to 
implement existing soft error detection and recovery 
techniques. 

VI. CONCLUSION 

 This paper discussed how to join the domain of 
functional safety and soft errors. This is done by proving 
that a soft error is a systematic error and can only be 
eliminated by a design modification. 
 The two domains are also joined since adding a soft error 
detection and recovery technique helps comply with 
IEC 61508, the most generic functional safety standard. 
IEC 61508 states that the system software should have 
diagnostics to be able to detect malfunction. Soft error 
detection techniques are in fact diagnostic techniques, so 
compliance with the standard is eased by implementing a 
detection technique. 
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