
ANNUAL JOURNAL OF ELECTRONICS, 2015, ISSN 1314-0078

108

Integration of Soft Errors in Functional Safety:
A Conceptual Study

Jens Vankeirsbilck, Hans Hallez and Jeroen Boydens
Abstract - Embedded systems are used for both safety and

non-safety critical applications. Safety critical systems must
have a very low failure rate, as a failure can cause injury or
even death. This paper presents soft errors as a cause for
failure. Soft errors are systematic failures that lead to bit-flips
in registers or other memory regions and affect the software
in execution. The soft error and its detection techniques are
linked to requirements imposed by the functional safety
standards.

Keywords – Functional Safety, Soft Errors, Embedded
Systems

1. INTRODUCTION

 Embedded systems are used more and more for different
types of applications, e.g. brake-by-wire, video streaming,
drones, etc. From a safety point of view, those applications
can be divided into two categories: safety critical or non-
safety critical applications. Safety critical systems are
systems whose actions can decide over life, injury or even
death. Non-safety critical systems are often infotainment
systems.
 A safety critical system, as any system, will fail once in
a while. Such a failure can have many causes: a software
bug, resistor short-circuit, rising temperature, etc. In this
paper, the soft error is presented as a cause of failure. A
soft error is a disturbance of hardware caused by external
factors which affect the software in execution. These
external factors can be radiation, fast temperature increase,
etc. If the software is not aware of the occurrence of a soft
error, the program memory can be corrupted leading to
unstable behavior and unpredictable states. When using
critical hardware components this can possibly lead to very
dangerous situations.
 The next two sections will discuss the two main domains
of the research, respectively functional safety and soft
errors. Then we will present some links between the two
domains and use those links to join the domain of soft
errors with that of functional safety. To conclude, future
work is presented and conclusions are drawn.

II. FUNCTIONAL SAFETY

 Embedded systems used as safety critical systems must
comply with a functional safety standard, whose goal is to
reduce the risk of physical injury or damage to health of
people either directly or indirectly. This section will
discuss the generic functional standard IEC 61508 and
some differences made by more domain specific functional
safety standards.

2.1 Demystifying IEC 61508

 The most generic functional safety standard is
IEC 61508. As described by [1] and [2], it is an “umbrella”
document covering multiple industries and applications. Its
basic purpose is to create requirements intended to achieve
reliable systems that either work properly or fail in a
predictable manner. It is based on two concepts on which
we will elaborate in the following sections:
• The Safety Life-Cycle, a detailed engineering

design process which reduces failures due to
systematic errors.

• The Safety Integrity Levels, quantified levels of
failure rates.

2.1.1 Safety Life-Cycle

 The Safety Life-Cycle is a model to eliminate systematic
errors. IEC 61508 defines systematic errors as errors that
lead to failures that are deterministically related to a certain
cause. They are typically design mistakes. Software errors
are considered systematic errors.

Concept

Hazard and Risk analysis

Safety requirements

Planning and Realization

Installation,
commissioning

Operation, maintenance,
repair

Modification

Decommissioning

D
oc

um
en

ta
tio

n

Fu
nc

tio
na

l S
af

et
y

as
se

ss
m

en
t

V
er

ifi
ca

tio
n

Fig. 1. Safety Life-Cycle

 The Safety Life-Cycle addresses these errors by
providing a classical, step-sequential waterfall engineering
process. As Fig. 1 shows, it starts with the concept of the
product and ends at its decommissioning. Each phase has to
be documented and verified before moving to the next one.

J. Vankeirsbilck, H. Hallez and J. Boydens are with:
1) “ReMI”, Faculty of Engineering Technology, KU Leuven
Zeedijk 101, B-8400 Oostende, Belgium;
2) “DISTRINET”, Dept. of Computer Science, KU Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium, e-mail:
{Jens.Vankeirsbilck,
Hans.Hallez,Jeroen.Boydens}@kuleuven.be

ANNUAL JOURNAL OF ELECTRONICS, 2015

 109

2.1.2 Safety Integrity Level

 Next to systematic failures, IEC 61508 also addresses
random hardware failures. These are failures attributable to
specific components and can be quantified. These
quantifications result in a failure rate. The failure rates of
components can be found in external or in-house failure
rate databases or can be estimated using mathematical
models. Once known, they help to predict the performance
of the system.
 IEC 61508 uses the concept of Safety Integrity
Levels (SIL) to express excellence of the performance of
components and the systems. The idea is to divide the
“spectrum” of integrity into four discrete levels and then
lay down requirements for each level. The higher the SIL,
the more stringent the requirements. For IEC 61508 (and
many other standards) the four levels are given in Table 1.

TABLE 1 SAFETY INTEGRITY LEVELS

SIL High Demand
(dangerous failures/hr)

Low Demand
(PFD)

4 ≥ 10-9 to < 10-8 ≥ 10-5 to < 10-4
3 ≥ 10-8 to < 10-7 ≥ 10-4 to < 10-3
2 ≥ 10-7 to < 10-6 ≥ 10-3 to < 10-2
1 ≥ 10-6 to < 10-5 ≥ 10-2 to < 10-1

 A distinction between high demand and low demand
systems must be made. For high demand systems, e.g. car
brakes, it is necessary to know the failure rate per hour
since there is a high probability of suffering the hazard
immediately each failure occurs. High demand systems are
defined as systems that are used more than once per year.
Low demand systems are used less than once per year. For
low demand systems the failure rate alone is of little use
since the hazard is not incurred immediately each failure
occurs. The demand of the system is infrequent, so failures
may well be dormant. Therefore low demand systems are
characterized using the probability of failure on demand
(PFD), it is necessary to know the chance of failure when
you actually need the system.

2.2 Specific Industries

 To compensate the generic character of IEC 61508,
many industry domains have created their own functional
safety standard, starting from IEC 61508.

• Medical: the medical domain has a general
functional safety standard: IEC 60601 [3], which
describes all requirements to build a complete
medical system. Recently, IEC 62304 has
emerged as a standard to describe the software
development processes for medical systems. A
difference between IEC 61508 and IEC 60601 is
that IEC 60601 does not use SIL to categorize
different medical systems.

• Railway: the railway domain has three standards,
EN 50126 which describes Reliability,
Availability, Maintainability and Safety;
EN 50128 [4] describes the software development
processes; and EN 50129 describes System
Safety. A difference between the EN 5012X and

IEC 61508 is the introduction of Software Safety
Integrity Levels (SSIL) by the EN 5012X series.

III. SOFT ERRORS

 This section discusses the second domain of our
research: the soft error. First the main causes of the soft
error are presented and secondly the possible effects of a
soft error on the embedded system are listed.
3.1 Cause

Vcc

Lowering
voltage

1 0 0 1 1 0 ... Memory
before

Bit-Flip
Memory

after1 0 1 1 0 ...1

Fig. 2. Cause and Effect of a Soft Error

 Fig. 2 depicts the two main causes of soft errors: the
manufacturers, symbolized by the graph ‘lowering the
supply voltage’, and the work environment, symbolized by
the electromagnetic wave.
 One cause of a soft error is the current trend followed by
manufacturers. To satisfy their customers, manufacturers of
embedded systems or components used by embedded
systems have decreased the supply voltage, decreased the
size… of those systems. While this has many advantages,
e.g. increased battery lifetime, increased transistor density
so the same die area can house more computing power… it
also has one big disadvantage: the devices are now much
more susceptible to soft errors.
 Another cause of soft errors is the work environment of
the embedded system, which is nowadays filled with
radiation emitted from other electrical appliances, WiFi
hotspots, natural background radiation, contaminated
packaging, etc.
 The radiation leads to highly energized particles that can
pass through the embedded system, affecting its hardware.
As described by Baumann [5], the passing particle can
create a short pulse which can flip a transistor from open to
close or vice versa. Due to the decreasing scale and supply
voltage of the embedded system, the energy needed by the
particle to flip the transistor has decreased, leading to a
higher occurrence of soft errors.

3.2 Effects

 Fig. 2 shows the primary result of a soft error: a bit of a
memory location is flipped. That faulty bit does not
necessarily have an effect on the system.
Fig. 3 is a simplified adaptation of the flowchart provided
by Mukherjee [6] and shows how certain conditions have
to hold before the bit-flip affects the system or the software
in execution.

ANNUAL JOURNAL OF ELECTRONICS, 2015

 110

 The first condition is that the faulty bit has to be read.
Since soft errors are transient errors, overwriting the bit
will discard the previous value, masking the bit-flip.
 Secondly the bit has to be an Architectural Correct
Execution or ACE bit. An ACE bit is a bit necessary for
correct execution, e.g. a bit from the program counter. If a
bit is un-ACE, thus unnecessary for correct execution, it
cannot affect the system or software. An example of an un-
ACE bit is a bit of the branch predictor. A branch predictor
is a structure that tries to predict which branch has to be
taken based on previous decisions. If a bit is flipped in this
structure, or any other prediction structure, the performance
of the system may be affected, but it will not affect correct
execution.
 If both conditions hold, the faulty bit is read and it is an
ACE bit, the bit-flip will affect the software in execution.
The effect on the software largely depends on the location
of the bit-flip: Main Memory, General Purpose Register,
Program Counter or Stack Pointer. Generally speaking, the
effects can be divided into two categories:

• Data flow corruption, leading to wrong
intermediary and output values.

• Control flow corruption, affecting the execution
order of the instructions. A control flow error
leads to a jump to unintended instruction.

Bit is Flipped

Faulty bit
is read

NO

Software not
affected

YES

Bit is
ACE

YES

Software
Affected

Software not
affected

NO

Fig. 3. Simplified flowchart to determine if the Bit-flip will affect
the software.

 Embedded systems are often used to control parts of its
environment, an actuator, a servomotor... through I/O. This
I/O is often memory mapped in the Main Memory of the
embedded system. A bit-flip affecting a memory mapped
I/O register may not affect the software in execution, but

can affect the environment, e.g. controlling an actuator
when it is actually prohibited. This can create very
dangerous situations!

IV. INTEGRATION

 To be able to join soft errors and functional safety, soft
errors must be classified as systematic or random hardware
failure. The failure to take into account is not the failure of
the software, but the bit-flip since the software only fails
due to the occurrence of a bit-flip.
 To be able to classify the bit-flip, we took a look at the
definitions for the failures given by IEC 61508:

• A systematic failure is a failure related in a
deterministic way to a certain cause, which
can only be eliminated by a modification of
the design or of the manufacturing process,
operational procedures or other relevant
factors.

• A random hardware failure is a failure
occurring at a random time, which results
from one or more degradation mechanisms.

 By analyzing the definitions, we conclude that a soft
error is a systematic error. The bit-flip can always be traced
back to a certain cause, be it e.g. EMI or rising
temperature, and it can only be eliminated by a design
modification.

4.1 Reducing the failure rate

Fig. 5. Cost of soft error detection and recovery

SWIFT

Detection
and

Recovery scheme

Detection scheme
+

Recovery scheme

Detection Recovery

• Checkpointing

Automatic detection and
recovery of CFE

• ACCE(D)
• CFEDR

Diverse programming

• N-version
• Recovery block
• Hybrid formsData

• Duplication and
comparison

• Defensive
programming

Control
Flow

• SIED
• CFCSS
• RSCFC
• ECCA

Fig. 4. Software implemented fault tolerance techniques

ANNUAL JOURNAL OF ELECTRONICS, 2015

 111

 Functional safety is about reducing the risk of system
failure. Soft Errors play a role in the failure rate of the
device, so detecting and recovering from them will reduce
the rate. Adding a detection and recovery technique
reduces the number of soft errors that have an effect on the
software, resulting in a reduced failure rate for the system.
 Detecting and recovering from soft errors can be
hardware-based or software-based. As Fig. 5 shows,
detecting soft errors through software is more cost
efficient. Hardware-based means adding components, e.g. a
shield, to the PCB, which means this must be added for
each product. This represents a nearly constant cost per
product. Software-based detection techniques represent a
high cost at development time, but once the software is
completed it can be applied to each product, lowering the
cost significantly for each product sold. Therefore future
research will focus on software implemented detection and
recovery techniques.
 A second reason to focus on software implemented
techniques is to ease compliance with functional safety
standards. IEC 61508 states that: System software should
include software for diagnosing faults in the system
hardware, error detection for communication links and
online detection of the application of software modules.
The software in execution should be tested for control and
data flow. Since data and control flow corruption are
effects of a soft error, adding a software implemented
detection and recovery technique ensures those corruptions
are detected, and thus helps compliance with IEC 61508.

V. FUTURE WORK

 Future research will focus on software implemented
detection and recovery techniques or software implemented
fault tolerance (SWIFT). Fig. 4 gives an overview of
existing SWIFT techniques. The techniques have been
grouped by their ability. The left group of techniques all
have their specific function, e.g. SIED is meant to detect
control flow errors and duplication is used to detect data
flow errors. The right group of techniques detect and
recover from the effects of the soft error, e.g. the diverse
programming techniques use multiple versions of the
program and a voter to decide on the correct result,
masking the effect of the soft error.
 First we will further complete the list by performing a
literature study.
 Once the list of existing SWIFT techniques is more or
less complete, research will focus on implementing the
techniques while complying with the rules of functional
safety. Although soft errors and its detection techniques
can theoretically be joined with functional safety, research
will have to determine if this can be translated in practice.
Software implemented techniques must comply with the
software rules imposed by functional safety. Functional
safety standards demand the use of a programming
language subset, to force the programming language to be
fully and unambiguously defined. Moreover, the standards
demand the use of a coding standard and demand the
limitation of certain programming constructs, e.g. pointers.
These rules could make it impossible or very hard to
implement existing soft error detection and recovery
techniques.

VI. CONCLUSION

 This paper discussed how to join the domain of
functional safety and soft errors. This is done by proving
that a soft error is a systematic error and can only be
eliminated by a design modification.
 The two domains are also joined since adding a soft error
detection and recovery technique helps comply with
IEC 61508, the most generic functional safety standard.
IEC 61508 states that the system software should have
diagnostics to be able to detect malfunction. Soft error
detection techniques are in fact diagnostic techniques, so
compliance with the standard is eased by implementing a
detection technique.

REFERENCES

[1] D. J. Smith and K. G. Simpson, SAFETY CRITICAL
SYSTEMS HANDBOOK: a straightfoward guide to functional
safety, IEC 61508 (2010 edition) and related standards, including
process IEC 61511 and machinery IEC 62061 and ISO 13849,
Third ed., Elsevier, 2010.
[2] M. Medoff and R. Faller, Functional Safety: An IEC 61508
SIL 3 Compliant Development Process, 2nd ed., exida, 2012.
[3] IEC 60601-1: General Requirements for Basic Safety and
Essential Performance, 2005.
[4] EN 50128: Railway applications - Communication, signalling
and processing systems - Software for railway control and
protection systems, 2011.
[5] R. C. Baumann, "Radiation-induced soft errors in advanced
semiconductor technologies," Device and Materials Reliability,
IEEE Transactions on, vol. 5, no. 3, pp. 305-316, 2005.
[6] S. Mukherjee, Architecture design for soft errors, Morgan
Kaufmann, 2011.
[7] J. Autran, D. Munteanu, P. Roche and G. Gasiot, "Real-time
soft-error rate measurements: A review," Microelectronics
Reliability, vol. 54, no. 8, pp. 1455-1476, 2014.

