
ANNUAL JOURNAL OF ELECTRONICS, 2015, ISSN 1314-0078

104

Isolating Real-time from Processor-intensive
Processes in Embedded Multi-core Systems

Piet Cordemans, Nico De Witte, Jens Vankeirsbilck, Willem Melis and Jeroen Boydens

Abstract – Multi-core embedded systems allow to isolate

critical processes on a CPU, while management is provided by
a single operating system. This provides an opportunity to
address real-time and security issues. We try to determine if
processes can be effectively isolated under heavy processor
load in a setup with the Radxa, a quad-core embedded system,
and Linux cgroups. In our experiment we measure the
variance of a time-critical signal while stressing the system.
We explore different scenarios and determine the optimal
configuration.

Keywords – Embedded operating systems, multi-core, soft-
realtime

I. INTRODUCTION

 Linux is in essence a time-sharing, multi-user operating
system, which is focused on maximizing throughput. In
order to prevent starvation due to prioritization, fairness is
guaranteed in scheduling processes. Although a high-
throughput of processes is a desirable property of an OS,
Linux cannot preempt processes when executing system
calls, or preempt kernel processes. Moreover the difference
between minimal and maximal response time of a
processes, this is known as jitter, cannot be limited for
certain time-critical processes. In effect Linux sacrifices
deterministic scheduling and cannot guarantee real-time
behavior in favor of throughput and focusing on usability
from a user perspective [1].
 In contrast, a Real-Time Operating System (RTOS)
favors deterministic scheduling and minimizes jitter for
real-time critical processes, which are desirable properties
when dealing with embedded hardware.
 Nevertheless, embedded Linux is the favored OS for
embedded systems despite the lack of real-time features.

A. Multi-core organization

 As multi-core embedded systems are adopted, the
organization of CPU’s offer opportunities to isolate time-
critical from data-intensive processes. This is called the
planar pattern, in which a control plane and data plane are
defined [2]. By assigning the necessary hardware resources
to the control plane, the time-critical processes are no
longer interfered by the processes in the data plane, which
utilize the other hardware resources. In order to optimize
the utilization of hardware all resources which are not
needed in the control plane are assigned to the data plane.

 The planar pattern can be applied in two general
hardware configurations. On the one hand is the Symmetric
Multi-Processing (SMP) organization, which involves a
single OS to manage all available cores. In a SMP
configuration all memory is shared which facilitates
communication between processes. Furthermore it allows
for an optimal use of resources and is flexible when more
processes are added to the system.
 On the other hand is Asymmetric Multi-Processing
(AMP) organization, in which no longer a single OS
manages all cores. Different configurations are possible to
assign operating systems, real-time operating systems or no
OS at all to a single CPU or a group of CPU’s. In this setup
isolating processes can be achieved by assigning these
processes to separate operating systems.
 In this paper we evaluate a technique called cgroups to
isolate time-critical processes in a SMP organization. This
should allow to combine the benefits of a SMP architecture
with isolation of real-time critical processes.
 Several approaches of adopting real-time behavior have
been examined for embedded Linux. Papaux et al. [3]
describe virtualization on an embedded system with KVM
and measure performance degradation. However they do
not consider jitter and variability in real-time critical
processes. They rather focus on throughput of the
virtualized system.
 Varanasi and Heiser [4] developed a hypervisor which
supports the hardware extensions of ARM. They conclude
that virtualization extensions reduce hypervisor complexity
and make it a viable approach with minimal instruction
cycle overhead. They mention real-time support with a
real-time clock which is configured as a pass-through
device. However their implementation does not support a
multi-core architecture.
 Brandt et al. [5] describe a scheduler which supports a
mix of best-effort, hard- and soft-real time processes. This
scheduler is not compatible with the Linux operating
system and does not support multi-core processing.
 Considering reliability, two approaches have been
examined. On the one hand Lee et al. [6] proposed a task
remapping technique in order to increase reliability. It
depends heavily on an extensive compile-time analysis.
 On the other hand in [7] Huang et al. implemented a
fault-tolerant task scheduling system for multiprocessor
embedded systems. It considered both transient and
permanent problems and optimally uses hardware and
software redundancy.
 Brandenburg et al. [8] presented a case study which
evaluates different real-time scheduling algorithms.
 This paper is organized as followed. In Section 2 the
principles of cgroups are introduced. Next in Section 3 the
setup and results of the experiments are given. In Section 4
the results are discussed. Finally future work is indicated.

P. Cordemans, J. Vankeirsbilck and J. Boydens are with the
Faculty of Engineering Technology, KU Leuven e-mail:
{Piet.Cordemans, Jens.Vankeirsbilck,
Jeroen.Boydens}@kuleuven.be

N. De Witte is with the Department of Electronics-ICT, Vives
University college email: Nico.Dewitte@vives.be

W. Melis is a student of the Faculty of Engineering Technology,
KULeuven.

ANNUAL JOURNAL OF ELECTRONICS, 2015

 105

II. CGROUPS

 Cgroups is a Linux kernel feature since version 2.6.24
and has had a major redesign since version 3.14. It allows
to limit, prioritize and isolate CPU usage and other
resources such as memory and I/O for a collection of
processes.

A. CPUsets

 CPUsets is a part of cgroups which maps processes to
specific banks in memory or to a logical CPU or set of
logical CPU’s. They extend process scheduling with a set
of hooks in order to manage dynamic process scheduling
on multi-core systems.
 CPUsets communicate through the file system rather
than using system calls. A virtual file system is mounted in
which a hierarchical system of CPUsets is described.
CPUsets are hierarchical in two ways. A child spawned of
a process in a CPUset, automatically belongs to that
CPUset. Moreover, a child of a CPUset is limited to the
resources assigned to its parent. When a CPUset consists
only of resources which are exclusively assigned to it and
its children, this CPUset is called an exclusive CPUset.

B. Scheduling

 CPUsets extend the behavior of the scheduling system
by a set of hooks, which manipulate process attributes such
as affinity, real-time priority and the nice factor.
 The load balancer is responsible for assigning processes
to specific cores. Each process has an affinity attribute
which binds the process to a specific queue of a core.
Affinity is important to avoid trashing the cache by
switching a process from one core to another all the time.
When a specific process is isolated on a specific core,
CPUsets manipulate all affinity attributes so that the load
balancer assigns the specific process to the queue of the
chosen core, while other processes are assigned to the
queues of other cores.
 The scheduler assigns time slices in a time window to
the specific processes in its queue. It assigns a virtual
runtime variable, which indicates how much of the
processor time has been used by the process. As Linux
employs a fair scheduler in the default scheduling policy,
this means that the process with the lowest virtual runtime
value has a higher priority. However there is the minimum
granularity, which indicates the minimum time that is
assigned to a process in the window regardless of its
priority.
 Setting the nice factor also changes the time which is
assigned to a specific process. This attributes to a weight,
which is relative to all the weights of all processes in the
queue of the scheduler. Increasing the nice factor will result
in a lower priority and vice versa.
 Changing the real-time priority factor immediately
interferes with scheduling the next process.
 Finally, CPUsets do not guarantee exclusive access to
the variables which manipulate priority of tasks. However
if another system tries to manipulate priority while
CPUsets are active, the system call is intercepted and an

error is returned which indicates that CPUsets will
maintain priority.

III. EXPERIMENTS

 Four experiments are conducted in different scenarios.
One experiment without process isolation and three
experiments with isolation of a time-critical process from
CPU bound processes in different configurations. The
general setup of the experiments is shown in Figure 1.

Core 0 Core 1

Core 2 Core 3

Timer
Radxa

Mbed

Counter

Stress Signal

Fig. 1. Setup measurements of the time-critical signal

 These have been conducted on the Radxa Rock Pro
board which is built with the RK3188, a quad-core ARM
Cortex-A9 processor [9]. This processor has a maximum
clock frequency of 1.6GHz, all cores contain a L1 data and
instruction cache of 32 KB and the processor has a shared
512 KB unified L2 cache. The board provides 2 GB of
memory.
 In our experiments we used a Debian Wheezy
distribution based on the Linux 3.18 kernel. The cgroup
package was obtained through the aptitude package
manager.
 The Radxa runs two programs. On the one hand, it
generates a “time-critical” square wave signal with a period
of 200 ms. This signal is generated through a real-time
POSIX timer with a resolution of 1 ns. The timer runs
asynchronously from the processor and notifies the timer
trigger event to the handler process. On the other hand, the
Radxa runs a CPU workload generator called stress, which
spawns threads and waits for them to complete [10].
 Each edge of the time-critical signal triggers the counter
of an independent microcontroller, the Mbed LPC1768
[11]. The counter allows to measure the interval of the
edges of the time-critical signal with resolution of 40 ns.
This measurement is compared with the nominal value of
100 ms:

Δtn = |tn - tnominal| (1)

 As the time-critical signal represents a task which needs
to adhere to real-time constraints, values Δtn larger than 0
represent the latency in scheduling that task. Variance in
latency is expected as scheduling issues arise in the
different scenarios.
 In a real scenario real-time constraints are determined by
the application, however in this case these are arbitrarily
determined as follows. A context switch on this hardware is
expected to take a couple of microseconds. When taking
the extreme CPU-bound stress into account the range in
which we want to observe variance is up to a factor 4 of a

ANNUAL JOURNAL OF ELECTRONICS, 2015

 106

normal context switch. Therefore in this case when jitter
exceeds 15µs the value is considered as an extreme value.
 In each scenario 2048 batches of 50 edges are counted.
All data and artefacts of these experiments are available at
github [12].

A. Baseline

 In the baseline experiment no processes are isolated. In a
first scenario no stress is applied. Figure 2 shows the
discrete probability distribution function (pdf) of Δt.

Δt (µs)
0

0.1
0.2
0.3
0.4
0.45P

0 1 2 3 4 5 6 7 8 9 10
Fig. 2. No isolation, no stress: sample mean sy μ0034.0

_
= and

sample variance 1461.22 =yσ

 In a second scenario in the experiment without process
isolation, CPU-bound stress is applied. I.e. 16 threads
which executes an infinite loop calculating the square root
of a single variable. The sample mean of Δt in this scenario
is 327.5195 µs, a value larger than the period of the signal.
This effect is due to extreme values in 26 of the 2048
samples, of which 14 are in the millisecond range. Figure 3
shows the discrete pdf of Δt smaller than 15 µs in this
scenario.

Δt (µs)
0 0 1 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3
0.4

P

0.5
0.6
0.7

Fig. 3. No isolation, with CPU-bound stress, 16 threads,

 values of Δt < 15µs: sy μ6048.0
_
= and 2568.02 =yσ

B. Isolating core 1

 In this experiment, core 1 is isolated in an exclusive
CPUset and only the time-critical process is assigned to it.
The other cores handle the 16 threads of the CPU intensive
process. Figure 4 shows the discrete pdf of Δt in this
scenario. There were no extreme values.

Δt (µs)
0 0 1 2 3 4 5 6 7 8 9 100

0.1
0.2
0.3
0.4

P

0.5
0.6
0.7

Fig. 4. Core 1 isolated, with CPU-bound stress, 16 threads,

values of Δt: and 0.29432 =yσ

C. Isolating core 0 and 1

 This experiment isolates both core 0 and core 1in an
exclusive CPUset with only the time-critical process
assigned to it. Core 2 and 3 execute 16 threads of the CPU
intensive process. Figure 5 shows the discrete pdf of Δt.
There was a single extreme value (30µs).

0
0.1
0.2
0.3
0.4

P

0.5
0.6
0.7

0 1 2 3 4 5 Δt (µs)
Fig. 5. Core 0 and 1 isolated, with CPU-bound stress, 16 threads,

values of Δt < 15µs: and 0.25232 =yσ

D. Isolating half of core 1

 In the fourth experiment a timeshare equal to half of all
time available on core 1 is attributed to the time-critical
process. The other cores and remaining slots on core 1 are
executing the stress process. In this scenario there are 503
extreme values larger than 100 µs with maximum values in
the range of 10 ms.

IV. DISCUSSION

 When considering only time-critical processes which do
not exceed a jitter of 15µs, the baseline experiment
indicates a larger sample mean value and a smaller sample
variance in the scenario with CPU-bound processes. In a
standard configuration, process preemption allows
scheduling in a deterministic fashion in almost 99% of the
time. However depending on a situation where the time-
critical task is interleaved and scheduled frequently, the
expected jitter is unacceptable.
 Isolating core 1 allows to fully utilize the other cores
while isolating the time-critical process fully on a hardware
level. Core 1 has been chosen as core 0 deals with OS
related interrupts which might interfere with the time-
critical process. However core 2 or 3 are equivalent in this
respect. In this scenario, the sample mean is lower when
compared to the baseline experiment with CPU-bound
stress, while sample variance is higher. Nevertheless
isolating core 1 prevents extreme jitter an indication that
considering all sample values in this case accounts for the
higher sample variance.
 As core 0 shares memory caches with core 1, as well as
deals with OS interrupts, the effect of isolating both cores
considers a more prudent approach than isolating only a
single core. Both sample mean and variance are lower,
however a single extreme value has been measured. We
conducted 6 additional experiments with 102 400 samples
while isolating respectively core 1 and both core 1 and 0.
These experiments indicated that extreme values occur in
both scenarios once, never exceeding a maximum value of
30 µs.
 The final experiment isolated half of the available time
on core 1. This resulted in a considerable worse scenario

ANNUAL JOURNAL OF ELECTRONICS, 2015

 107

than the baseline experiment with CPU-bound stress or the
other isolation experiments. This is due to the
implementation of attributing time shares of the core to a
specific process. Whereas isolation of a core is achieved by
manipulating the load balancer, assigning half of the time is
the responsibility of the scheduler. However the scheduler
can only perform a context switch when a tick occurs. As
the ticks have a period of 10 ms, any real-time system
requiring jitter lower than this value cannot rely upon this
feature of cgroups. In essence the granularity of time slices
is too large to reliably schedule the time-critical process
every 100 µs.

V. FUTURE WORK

 In our experiments we applied a CPU-bound load in
order to stress the OS and hardware system. However,
CPU-bound congestion might not be the only cause of
failing to meet real-time criteria. When the memory busses
are saturated, the virtual memory system might fail to load
the pages associated with the time-critical process, causing
extra jitter. In a future experiment we will force a memory
bus congestion and check the effect of process isolation on
shared caches and main memory. Furthermore we can
apply a combined set of processes, which induce CPU-
bound as well as memory-bound stress.
 Further, we might consider virtualization solutions for
process isolation, like KVM and LXC. Virtualization is a
technique popular in server environments, so the specific
real-time constraints of an embedded system process need
to be mapped onto these solutions. These techniques could
be comparatively evaluated with Cgroups.

VI. CONCLUSION

 In this paper we evaluated the performance of cgroups
on a multi-core embedded system. Cgroups are used to
isolate critical real-time processes under CPU-bound stress
in a SMP architecture. They allow to define CPUsets which
manipulate the load balancer and schedulers. In a
configuration which isolates the real-time process to an
exclusive CPUset we conclude that process isolation is
effective and considerably reduces jitter when compared
with a configuration without cgroups enabled. When the
scheduler is manipulated, for instance when trying to
assign half of a window of a CPU to the critical task, jitter
increases immediately up to the size of a time slice.

REFERENCES

[1] Love, Robert. Linux kernel development. Pearson Education,
2010.
[2] De Witte, Nico, Robbie Vincke, Sille Van Landschoot, Eric
Steegmans, and Jeroen Boydens. "Evaluation of a dual-core SMP
and AMP architecture based on an embedded case study." CW
Reports, 2013.
[3] Papaux, Geoffrey, Daniel Gachet, and Wolfram Luithardt.
"Processor virtualization on embedded linux systems." In
Education and Research Conference (EDERC), 2014 6th
European Embedded Design in, pp. 65-69. IEEE, 2014.

[4]Varanasi, Prashant, and Gernot Heiser. "Hardware-supported
virtualization on ARM." In Proceedings of the Second Asia-
Pacific Workshop on Systems, p. 11. ACM, 2011.
[5] Brandt, Scott, Scott Banachowski, Caixue Lin, and Timothy
Bisson. "Dynamic integrated scheduling of hard real-time, soft
real-time, and non-real-time processes." In Real-Time Systems
Symposium, pp. 396-407. IEEE, 2003.
[6] Lee, Chanhee, Hokeun Kim, Hae-woo Park, Sungchan Kim,
Hyunok Oh, and Soonhoi Ha. "A task remapping technique for
reliable multi-core embedded systems." In Proceedings of the
eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pp. 307-316.
ACM, 2010.
[7] Huang, Jia, Jan Olaf Blech, Andreas Raabe, Christian Buckl,
and Alois Knoll. "Analysis and optimization of fault-tolerant task
scheduling on multiprocessor embedded systems." In Proceedings
of the seventh IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pp. 247-256.
ACM, 2011.
[8] Brandenburg, Björn B., John M. Calandrino, and James H.
Anderson. "On the scalability of real-time scheduling algorithms
on multicore platforms: A case study." In Real-Time Systems
Symposium, 2008, pp. 157-169. IEEE, 2008.
[9] RK3188 Technical Reference Manual. Rockchip, 2013.
[10] Stress, a deliberately simple workload generator. Available
at: http://people.seas.harvard.edu/~apw/stress/
[11] Mbed NXP LPC1768 prototying board.
[12] https://github.com/Zilleplus/thesis

