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Abstract – Multi-core embedded systems allow to isolate 

critical processes on a CPU, while management is provided by 
a single operating system. This provides an opportunity to 
address real-time and security issues. We try to determine if 
processes can be effectively isolated under heavy processor 
load in a setup with the Radxa, a quad-core embedded system, 
and Linux cgroups. In our experiment we measure the 
variance of a time-critical signal while stressing the system. 
We explore different scenarios and determine the optimal 
configuration. 
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I. INTRODUCTION 

 
 Linux is in essence a time-sharing, multi-user operating 
system, which is focused on maximizing throughput. In 
order to prevent starvation due to prioritization, fairness is 
guaranteed in scheduling processes. Although a high-
throughput of processes is a desirable property of an OS, 
Linux cannot preempt processes when executing system 
calls, or preempt kernel processes. Moreover the difference 
between minimal and maximal response time of a 
processes, this is known as jitter, cannot be limited for 
certain time-critical processes. In effect Linux sacrifices 
deterministic scheduling and cannot guarantee real-time 
behavior in favor of throughput and focusing on usability 
from a user perspective [1].  
 In contrast, a Real-Time Operating System (RTOS) 
favors deterministic scheduling and minimizes jitter for 
real-time critical processes, which are desirable properties 
when dealing with embedded hardware.  
 Nevertheless, embedded Linux is the favored OS for 
embedded systems despite the lack of real-time features.  
 
A. Multi-core organization 
 
 As multi-core embedded systems are adopted, the 
organization of CPU’s offer opportunities to isolate time-
critical from data-intensive processes. This is called the 
planar pattern, in which a control plane and data plane are 
defined [2]. By assigning the necessary hardware resources 
to the control plane, the time-critical processes are no 
longer interfered by the processes in the data plane, which 
utilize the other hardware resources. In order to optimize 
the utilization of hardware all resources which are not 
needed in the control plane are assigned to the data plane. 

 The planar pattern can be applied in two general 
hardware configurations. On the one hand is the Symmetric 
Multi-Processing (SMP) organization, which involves a 
single OS to manage all available cores. In a SMP 
configuration all memory is shared which facilitates 
communication between processes. Furthermore it allows 
for an optimal use of resources and is flexible when more 
processes are added to the system.  
 On the other hand is Asymmetric Multi-Processing 
(AMP) organization, in which no longer a single OS 
manages all cores. Different configurations are possible to 
assign operating systems, real-time operating systems or no 
OS at all to a single CPU or a group of CPU’s. In this setup 
isolating processes can be achieved by assigning these 
processes to separate operating systems. 
 In this paper we evaluate a technique called cgroups to 
isolate time-critical processes in a SMP organization. This 
should allow to combine the benefits of a SMP architecture 
with isolation of real-time critical processes. 
 Several approaches of adopting real-time behavior have 
been examined for embedded Linux. Papaux et al. [3] 
describe virtualization on an embedded system with KVM 
and measure performance degradation. However they do 
not consider jitter and variability in real-time critical 
processes. They rather focus on throughput of the 
virtualized system. 
 Varanasi and Heiser [4] developed a hypervisor which 
supports the hardware extensions of ARM. They conclude 
that virtualization extensions reduce hypervisor complexity 
and make it a viable approach with minimal instruction 
cycle overhead. They mention real-time support with a 
real-time clock which is configured as a pass-through 
device. However their implementation does not support a 
multi-core architecture.  
 Brandt et al. [5] describe a scheduler which supports a 
mix of best-effort, hard- and soft-real time processes. This 
scheduler is not compatible with the Linux operating 
system and does not support multi-core processing.  
 Considering reliability, two approaches have been 
examined. On the one hand Lee et al. [6] proposed a task 
remapping technique in order to increase reliability. It 
depends heavily on an extensive compile-time analysis. 
 On the other hand in [7] Huang et al. implemented a 
fault-tolerant task scheduling system for multiprocessor 
embedded systems. It considered both transient and 
permanent problems and optimally uses hardware and 
software redundancy. 
 Brandenburg et al. [8] presented a case study which 
evaluates different real-time scheduling algorithms.  
 This paper is organized as followed. In Section 2 the 
principles of cgroups are introduced. Next in Section 3 the 
setup and results of the experiments are given. In Section 4 
the results are discussed. Finally future work is indicated.  
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II. CGROUPS 
 

 Cgroups is a Linux kernel feature since version 2.6.24 
and has had a major redesign since version 3.14. It allows 
to limit, prioritize and isolate CPU usage and other 
resources such as memory and I/O for a collection of 
processes.  
 
A. CPUsets 
 
 CPUsets is a part of cgroups which maps processes to 
specific banks in memory or to a logical CPU or set of 
logical CPU’s. They extend process scheduling with a set 
of hooks in order to manage dynamic process scheduling 
on multi-core systems.  
 CPUsets communicate through the file system rather 
than using system calls. A virtual file system is mounted in 
which a hierarchical system of CPUsets is described. 
CPUsets are hierarchical in two ways. A child spawned of 
a process in a CPUset, automatically belongs to that 
CPUset. Moreover, a child of a CPUset is limited to the 
resources assigned to its parent. When a CPUset consists 
only of resources which are exclusively assigned to it and 
its children, this CPUset is called an exclusive CPUset.  
 
B. Scheduling 
 
 CPUsets extend the behavior of the scheduling system 
by a set of hooks, which manipulate process attributes such 
as affinity, real-time priority and the nice factor.  
 The load balancer is responsible for assigning processes 
to specific cores. Each process has an affinity attribute 
which binds the process to a specific queue of a core. 
Affinity is important to avoid trashing the cache by 
switching a process from one core to another all the time. 
When a specific process is isolated on a specific core, 
CPUsets manipulate all affinity attributes so that the load 
balancer assigns the specific process to the queue of the 
chosen core, while other processes are assigned to the 
queues of other cores. 
 The scheduler assigns time slices in a time window to 
the specific processes in its queue. It assigns a virtual 
runtime variable, which indicates how much of the 
processor time has been used by the process. As Linux 
employs a fair scheduler in the default scheduling policy, 
this means that the process with the lowest virtual runtime 
value has a higher priority. However there is the minimum 
granularity, which indicates the minimum time that is 
assigned to a process in the window regardless of its 
priority.  
 Setting the nice factor also changes the time which is 
assigned to a specific process. This attributes to a weight, 
which is relative to all the weights of all processes in the 
queue of the scheduler. Increasing the nice factor will result 
in a lower priority and vice versa.  
 Changing the real-time priority factor immediately 
interferes with scheduling the next process. 
 Finally, CPUsets do not guarantee exclusive access to 
the variables which manipulate priority of tasks. However 
if another system tries to manipulate priority while 
CPUsets are active, the system call is intercepted and an 

error is returned which indicates that CPUsets will 
maintain priority. 
 

III. EXPERIMENTS 
 
 Four experiments are conducted in different scenarios. 
One experiment without process isolation and three 
experiments with isolation of a time-critical process from 
CPU bound processes in different configurations. The 
general setup of the experiments is shown in Figure 1.  
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Fig. 1. Setup measurements of the time-critical signal 

 These have been conducted on the Radxa Rock Pro 
board which is built with the RK3188, a quad-core ARM 
Cortex-A9 processor [9]. This processor has a maximum 
clock frequency of 1.6GHz, all cores contain a L1 data and 
instruction cache of 32 KB and the processor has a shared 
512 KB unified L2 cache. The board provides 2 GB of 
memory. 
 In our experiments we used a Debian Wheezy 
distribution based on the Linux 3.18 kernel. The cgroup 
package was obtained through the aptitude package 
manager. 
 The Radxa runs two programs. On the one hand, it 
generates a “time-critical” square wave signal with a period 
of 200 ms. This signal is generated through a real-time 
POSIX timer with a resolution of 1 ns. The timer runs 
asynchronously from the processor and notifies the timer 
trigger event to the handler process. On the other hand, the 
Radxa runs a CPU workload generator called stress, which 
spawns threads and waits for them to complete [10]. 
 Each edge of the time-critical signal triggers the counter 
of an independent microcontroller, the Mbed LPC1768 
[11]. The counter allows to measure the interval of the 
edges of the time-critical signal with resolution of 40 ns. 
This measurement is compared with the nominal value of 
100 ms: 
 

Δtn = |tn - tnominal| (1) 
 

 As the time-critical signal represents a task which needs 
to adhere to real-time constraints, values Δtn larger than 0 
represent the latency in scheduling that task. Variance in 
latency is expected as scheduling issues arise in the 
different scenarios.  
 In a real scenario real-time constraints are determined by 
the application, however in this case these are arbitrarily 
determined as follows. A context switch on this hardware is 
expected to take a couple of microseconds. When taking 
the extreme CPU-bound stress into account the range in 
which we want to observe variance is up to a factor 4 of a 
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normal context switch. Therefore in this case when jitter 
exceeds 15µs the value is considered as an extreme value. 
 In each scenario 2048 batches of 50 edges are counted. 
All data and artefacts of these experiments are available at 
github [12]. 
 
A. Baseline 
 
 In the baseline experiment no processes are isolated. In a 
first scenario no stress is applied. Figure 2 shows the 
discrete probability distribution function (pdf) of Δt.  

Δt (µs)
0

0.1
0.2
0.3
0.4
0.45P

0 1 2 3 4 5 6 7 8 9 10  
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 In a second scenario in the experiment without process 
isolation, CPU-bound stress is applied. I.e. 16 threads 
which executes an infinite loop calculating the square root 
of a single variable. The sample mean of Δt in this scenario 
is 327.5195 µs, a value larger than the period of the signal. 
This effect is due to extreme values in 26 of the 2048 
samples, of which 14 are in the millisecond range. Figure 3 
shows the discrete pdf of Δt smaller than 15 µs in this 
scenario. 
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Fig. 3. No isolation, with CPU-bound stress, 16 threads, 
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B. Isolating core 1 
 
 In this experiment, core 1 is isolated in an exclusive 
CPUset and only the time-critical process is assigned to it. 
The other cores handle the 16 threads of the CPU intensive 
process. Figure 4 shows the discrete pdf of Δt in this 
scenario. There were no extreme values. 
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Fig. 4. Core 1 isolated, with CPU-bound stress, 16 threads,  
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C. Isolating core 0 and 1 
 
 This experiment isolates both core 0 and core 1in an 
exclusive CPUset with only the time-critical process 
assigned to it. Core 2 and 3 execute 16 threads of the CPU 
intensive process. Figure 5 shows the discrete pdf of Δt. 
There was a single extreme value (30µs). 
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Fig. 5. Core 0 and 1 isolated, with CPU-bound stress, 16 threads,  
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D. Isolating half of core 1 
 
 In the fourth experiment a timeshare equal to half of all 
time available on core 1 is attributed to the time-critical 
process. The other cores and remaining slots on core 1 are 
executing the stress process. In this scenario there are 503 
extreme values larger than 100 µs with maximum values in 
the range of 10 ms. 
 

IV. DISCUSSION 
 
 When considering only time-critical processes which do 
not exceed a jitter of 15µs, the baseline experiment 
indicates a larger sample mean value and a smaller sample 
variance in the scenario with CPU-bound processes. In a 
standard configuration, process preemption allows 
scheduling in a deterministic fashion in almost 99% of the 
time. However depending on a situation where the time-
critical task is interleaved and scheduled frequently, the 
expected jitter is unacceptable. 
 Isolating core 1 allows to fully utilize the other cores 
while isolating the time-critical process fully on a hardware 
level. Core 1 has been chosen as core 0 deals with OS 
related interrupts which might interfere with the time-
critical process. However core 2 or 3 are equivalent in this 
respect. In this scenario, the sample mean is lower when 
compared to the baseline experiment with CPU-bound 
stress, while sample variance is higher. Nevertheless 
isolating core 1 prevents extreme jitter an indication that 
considering all sample values in this case accounts for the 
higher sample variance. 
 As core 0 shares memory caches with core 1, as well as 
deals with OS interrupts, the effect of isolating both cores 
considers a more prudent approach than isolating only a 
single core. Both sample mean and variance are lower, 
however a single extreme value has been measured. We 
conducted 6 additional experiments with 102 400 samples 
while isolating respectively core 1 and both core 1 and 0. 
These experiments indicated that extreme values occur in 
both scenarios once, never exceeding a maximum value of 
30 µs.  
 The final experiment isolated half of the available time 
on core 1. This resulted in a considerable worse scenario 
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than the baseline experiment with CPU-bound stress or the 
other isolation experiments. This is due to the 
implementation of attributing time shares of the core to a 
specific process. Whereas isolation of a core is achieved by 
manipulating the load balancer, assigning half of the time is 
the responsibility of the scheduler. However the scheduler 
can only perform a context switch when a tick occurs. As 
the ticks have a period of 10 ms, any real-time system 
requiring jitter lower than this value cannot rely upon this 
feature of cgroups. In essence the granularity of time slices 
is too large to reliably schedule the time-critical process 
every 100 µs. 

 
V. FUTURE WORK 

 
 In our experiments we applied a CPU-bound load in 
order to stress the OS and hardware system. However, 
CPU-bound congestion might not be the only cause of 
failing to meet real-time criteria. When the memory busses 
are saturated, the virtual memory system might fail to load 
the pages associated with the time-critical process, causing 
extra jitter. In a future experiment we will force a memory 
bus congestion and check the effect of process isolation on 
shared caches and main memory. Furthermore we can 
apply a combined set of processes, which induce CPU-
bound as well as memory-bound stress. 
 Further, we might consider virtualization solutions for 
process isolation, like KVM and LXC. Virtualization is a 
technique popular in server environments, so the specific 
real-time constraints of an embedded system process need 
to be mapped onto these solutions. These techniques could 
be comparatively evaluated with Cgroups. 
 

VI. CONCLUSION 
 
 In this paper we evaluated the performance of cgroups 
on a multi-core embedded system. Cgroups are used to 
isolate critical real-time processes under CPU-bound stress 
in a SMP architecture. They allow to define CPUsets which 
manipulate the load balancer and schedulers. In a 
configuration which isolates the real-time process to an 
exclusive CPUset we conclude that process isolation is 
effective and considerably reduces jitter when compared 
with a configuration without cgroups enabled. When the 
scheduler is manipulated, for instance when trying to 
assign half of a window of a CPU to the critical task, jitter 
increases immediately up to the size of a time slice. 
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