
ANNUAL JOURNAL OF ELECTRONICS, 2015, ISSN 1314-0078

69

Web Based Tool for State Machines Design

Vassiliy Platonovitch Tchoumatchenko

Abstract – The paper describes a web based tool for
designing finite state machines (FSM). The user specifies a
state machine by drawing a diagram, from which the tool
generates a synthesizable VHDL model. The intended
application of the software is to help student in learning HDL
based design of electronic circuits.

Keywords – Finite State Machine (FSM), state diagram,
VHDL

I. INTRODUCTION

 In the context of electronic design automation, a finite-
state machine (FSM), or simply a state machine, is a
mathematical model used to design sequential logic
circuits. It is defined by a list of states, the triggering
condition for each transition and the output values. The
state machines are convenient formalism for specifying the
behavior of control circuits. As such they are often used in
the digital circuits design.
 FSMs can be represented graphically, which would help
the designer to visualize and design in a more efficient
way. Most modern digital IC design flows are based on
hardware description languages (HDL). Therefore, the
designer requires a straightforward way to convert the
visualized design to HDL code in order to simulate and
implement it. The procedures for such conversions are well
defined and can be implemented as a design automation
tool. Such tool can be especially helpful for students, who
are learning digital design and HDLs.
 The task of converting state diagrams to HDL code is
addressed be several existing tools, both open-source and
commercial – [1], [2], [3] and [4]. What these tools have in
common is that all require local installation. Since our goal
is to move as much as possible of the student’s design
works in a web-based collaborative environment, this is a
serious drawback.

II. TOOL STRUCTURE

 The tool consists of state diagram editor; JSON store and
HDL model generator services (fig. 1). The user interface
is implemented in JavaScript and HTML5, which makes it
accessible on both mobile devices and desktop computers
[5], [6].
 The serialized state diagrams are persisted in a JSON
store – which can be either a private database installation
(e.g. CouchDB) or a cloud based service like GitHub [7].
 Once the state diagram is finished, it is sent to the
selected HDL generator. At the time of writing, the VHDL
generator is already available and a System Verilog
generator is under development. The state diagram is
analyzed and suitable messages are produced if

inconsistencies are found. After the validation, a HDL
model is generated and transferred back to the UI. The
HDL generators are implemented as web services.

JSON
store

VHDL
service

User interface Backend
services

Verilog
service

Fig. 1. Components of the FSM tool

III. TOOL FUNCTIONALITY

A. State Diagram Editing

 The primary design entry method of the FSM tool is a
state diagram editor (fig.2). Both Moore and Mealy state
machines (fig. 3) are supported. If the output assignments
are defined only in the states, than a Moore state machine
will be generated. Alternatively, if there is output
assignments associated with the transitions, the tool
produces model of a Mealy FSM.

Fig. 2. FSM state diagram

V. Tchoumatchenko is with the Department of Electronics and
Electronics Technologies, Faculty of Electronic Engineering and
Technologies, Technical University - Sofia, 8 Kliment Ohridski
Blvd., 1000 Sofia, Bulgaria, e-mail: vpt@tu-sofia.bg

ANNUAL JOURNAL OF ELECTRONICS, 2015

 70

Fig. 3. State machine types: (a) Mealy, (b) Moore

B. HDL Code Generation

 By default, the VHDL code generator implements a
three-process approach to structuring the FSM code (fig.
4). One sequential process models the state register (fig.
5a) and two combinational processes describe the next state
logic (fig. 6) and the output logic (fig. 7). For smaller state
machines, the user has an option to choose a two-process
architecture, where the two combinational processes are
merged into one.
 The VHDL generator uses symbolic state enumerations
(fig. 5b), so that the actual state encoding can be decided at
the synthesis stage. This allows the designer to explore the
effect of the state encoding algorithm (e.g. one-hot vs Gray
vs binary) on the produced circuit. The next state logic
process contains code for recovering from parasitic states
(fig. 6a).

Fig. 5. Symbolic state type (a) and state register (b).

Fig. 6. Next state logic process.

Fig. 7. Output logic process.

IV. EDUCATIONAL APPLICATIONS

The described tool is include in the HDL based IC

design workflow used by some of the 4-th and 5-th year
students at the Department of Electronics, TU-Sofia.

Fig. 4. Three-process FSM architecture.

ANNUAL JOURNAL OF ELECTRONICS, 2015

 71

The students are required to work on multiple homework

assignments and a final project. They can accomplish most
of the front-end design (design entry and simulation) and
all of the report preparation by using web based tools –
EDA Playground [9], Google Docs, and the FSM tool
described in this paper.

For the synthesis, physical design and post-layout
simulation (fig. 8, 9), the students can use Xilinx Vivado
[10]. It is available in the lab or the students can install a
free Vivado version on their own computers.

V. CONCLUSION

 The paper considers features, architecture and software
implementation of the developed design automation tool
for converting state diagrams to VHDL code. The web
based nature of the FSM design tool facilitates its
integration with similar design automation tools for code
editing and HDL simulation. Together they can be used to
support on-demand, self-paced learning of digital IC
design.

ACKNOWLEDGEMENTS

 The work in this paper is a part of the EU project
“Promoting Knowledge Work Practices in Education –
KNORK” at the Department of Electronics - Technical
University of Sofia, which is supported by the Lifelong
Learning Program of the European Community.

REFERENCES

[1] Amr T. Abdel-hamid and Mohamed Zaki and Sofiène Tahar.
A Tool Converting Finite State Machine to VHDL, Proc. of IEEE
Canadian Conference on Electrical & Computer Engineering
(CCECE’04), Niagara Falls, pp. 1907--1910, 2004.
[2] S. Duffner, 'Qfsm - The Finite State Machine Designer', 2015.
[Online]. Available: http://qfsm.sourceforge.net/. [Accessed: 04-
Jul- 2015].
[3] P. Zimmer, 'Fizzim – an open-source fsm design environment',
2015. [Online]. Available: http://www.fizzim.com/. [Accessed:
04- Jul- 2015].
[4] Xilinx.com, 'StateCAD Help', 2007. [Online]. Available:
http://www.xilinx.com/itp/xilinx10/help/iseguide/mergedProjects/
state/whnjs.htm. [Accessed: 04- Jul- 2015].
[5] Draw2d.org, 'Draw2D touch', 2015. [Online]. Available:
http://www.draw2d.org. [Accessed: 05- Jul- 2015].
[6] Jointjs.com, 'JointJS - the HTML 5 JavaScript diagramming
library.’ 2015. [Online]. Available: http://www.jointjs.com/.
[Accessed: 04- Jul- 2015].
[7] Draw2d.org, 'Github as JSON backend | Draw2D touch', 2015.
[Online]. Available:
http://www.draw2d.org/draw2d/index_files/65f70d7ec25cfaae0ab
862523263d8c4-137.php. [Accessed: 05- Jul- 2015].
[8] Clifford E. Cummings, ‘Coding And Scripting Techniques For
FSM Designs With Synthesis-Optimized, Glitch-Free Outputs’,
SNUG-2000, Boston, MA, 2000.
[9] http://www.edaplayground.com/
[10] http://www.xilinx.com/products/design-tools/vivado.html

Fig.8. Synthesized circuit (Xilinx Vivado)

Fig.9. Post-layout simulation (Xilinx Vivado)

