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Abstract – The accuracy of automated emotion recognition 

depends on the quality of EEG signal descriptors. In the 
present contribution we report on an experimental evaluation 
of ten time-domain EEG signal descriptors with respect to 
their applicability to the task of negative emotions 
recognition. The ranking of these descriptors based on their 
estimated practical worth shows that the mean of the absolute 
values of the first difference of the normalized signal 
contributes for the highest recognition accuracy. 
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I. INTRODUCTION 
 
 In the last decade there is an increasing interest towards 
the detection of emotions from EEG signals. This is mainly 
due to the high demand for intelligent human-machine and 
brain-computer interaction interfaces, which are important 
part of information support, health care, and educational 
training applications.  
 Nowadays human-machine interaction technology is 
dominated by the statistical machine learning paradigm, 
which assumes the existence of datasets representative to 
the operational conditions of a certain application. These 
datasets are used for the creation of statistical model(s) 
representing each category of interest, or for the creation of 
discriminative classifiers. Given sufficient amount of 
representative data, the classification accuracy depends on 
the discriminative power of the classifier, but more 
importantly on the informative value of the signal 
descriptors fed to the classifier.  
 In the present work we carry out an experimental 
evaluation of various signal descriptors, based on the time 
domain EEG signal, and evaluate their applicability to the 
task of automated recognition of negative emotional states. 
In particular each descriptor from two widely-used feature 
sets is compared with its counterparts and with the short-
time energy of an EEG signal, used as a feature [1-3]. 
 Specifically, the first set of EEG features is the set 
designed by Bo Hjorth [4]. It consists of three features 
(Activity, Mobility, and Complexity) describing the 
amplitude, frequency, and shape of an EEG signal.  In 
brief, Activity is defined as the amplitude variance of a 
signal. It is considered to have the necessary additive 
property to allow integration of different observations 
during the epoch into one representative figure. When 
computed the Activity has a high or low value if the high 

frequency components in the signal are few or respectively 
many. Activity corresponds to spectral analysis in the 
frequency domain. Mobility is calculated as the square root 
of the ratio between the variances of the first derivative and 
Activity, and represents the average of the frequency of the 
signal. This descriptor corresponds to the calculation of the 
standard deviation of a signal in the frequency domain. 
Complexity is a measure of details with reference to the 
curve shape of the sine wave. 
 Activity, Mobility, and Complexity were initially 
designed for the creation of EEG-based human-computer 
interfaces, but later on they have been proven universal and 
applicable to other tasks that rely on EEG signals, 
including the detection of emotional states from EEG 
signals [5]. 
 The second set of features evaluated here was proposed 
by Picard et al. [6], who compared multiple algorithms for 
feature-based recognition of emotional states on a given set 
of data. Among these are six statistical descriptors, such as: 
(i) the means of the raw signal, (ii) the standard deviation 
of the raw signal, (iii) the means of the absolute values of 
the first and second differences of the raw signal, and (iv) 
the means of the absolute values of the first and second 
differences of the normalized signal. These descriptors 
were purposely designed for the emotion detection task and 
account for the physiological activity of the body and brain. 
These six descriptors were employed in related studies on 
emotion detection from EEG signals [7-9].   
  In Section II we outline the ten EEG descriptors 
evaluated in the present work. In Section III we describe 
the common experimental setup used in the feature 
performance evaluation study. In Section IV we provide 
details on the estimation of person-specific thresholds for 
the recognizer of negative emotional states. The 
experimental results are reported in Section V, and in 
Section VI we provide summary and concluding remarks.  
 

II. FEATURE EXTRACTION 
 

The EEG signal descriptors considered here are 
characterized with low complexity and all features are 
derived directly from the time-domain signal. In brief, first 
the EEG signal ( )ix n  is pre-processed for reducing the 
interference from muscular and eye movement activity, 
which results in the free of artefacts EEG signal ( )ix n) . Here 
the subscript i stands for the channel number. All channels 
are processed uniformly so in further discussion we drop 
the index i but it reminds implied. All features are 
computed for short frames of the EEG signal, obtained 
through a sliding window of 343.75 milliseconds which 
moves with a skip rate of 85.9 milliseconds. Successive 
frames overlap with 75%. Therefore, the total number of 
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successive overlapping frames in a recording with N 
samples is: 

N K LP fix
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where the operator fix stands for rounding towards the 
smaller integer number, L is the predefined step size in 
samples, and K is the frame size, also in samples. Next, for 
each frame we compute the EEG signal feature that is 
going to be evaluated, as follows: 
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d) The mean of the absolute values of the first 
difference of the signal (MAVFDS): 
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e) The mean of the absolute values of the second 
difference of the signal (MAVSDS): 
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f) The mean of the absolute values of the first 
difference of the normalized signal (MAVFDNS): 
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g) The mean of the absolute values of the second 
difference of the normalized signal (MAVSDNS): 
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h) Activity: 
2  pActivity σ=                         (9) 

i) Mobility:  
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j) Complexity: 
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Next, statistical standardization of the calculated 
descriptors was performed, so that their distributions are 
normalized to zero mean value and unit standard deviation: 
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The mean value μp  and the standard deviation σp  are 

estimated for the feature of interest pD  and the process is 
repeated for each of the EEG channels. The subscript p is 
the frame index. 
 

III. EXPERIMENTAL SETUP 
 
 The evaluation of the aforementioned ten EEG signal 
descriptors was carried out following a common 
experimental protocol, based on the Database for Emotion 
Analysis using Physiological signals (DEAP) [15]. All 
descriptors were computed from the same set of EEG 
signals. Each descriptor was used separately to create a 
classifier, which were tested on another dataset. All 
descriptors were ranked according to the recognition 
accuracy. 

The DEAP database consists of recordings from thirty-
two participants with a total of 40 recordings per 
participant. Each recording, made while the participants 
were watching musical video-clips, consists of 40 channels. 
These include 32 EEG channels, electromyographic 
(EMG), electrooculographic (EOG) and other channels, all 
taken from different parts of the head and the body. The 
dataset includes original and pre-processed recordings from 
these forty channels. Frontal face videos and detailed 
metadata for the participants are also included in the 
database. All EEG recordings were self-annotated by the 
subjects participating in the data collection. 

The EEG recordings of 10 participants (with numbers 
№ 2, 11, 17, 21, 22, 24, 28, 29, 30, 32) were selected for 
our experiments, based on the annotations of the EEG 
songs. We aimed at balance between the numbers of songs 
tagged as negative and positive for each participant. Each 
participant’s data was split in three parts – training, 
development, and testing dataset, which consist of 20%, 
20%, and 60% of the available recordings. However, 
depending on the distribution of song ratings for each 
participant, these percentages varied up to 5%. This led to 
roughly 8 to 9 recordings used for training, 8 to 9 
recordings used for development, and 22 to 24 recordings 
used for testing, for each participant. The total number of 
test recordings is Nrec=227. 

The split of recordings into these three datasets was 
performed in the following way: The dataset of each 
participant was split into two groups – negative and non-
negative – depending on the like/dislike rating of the 
recording. Each rating provided in the database indicates 
the personal preferences of the participant. The like/dislike 
rating’s range is from 1 to 9, where 1 corresponds to the 
lowest rating (disliked) and 9 is the highest rating – liked. 
In the current experiment, recordings which had like/dislike 
rating of 4 or lower were tagged as negative, while 
recordings with rating higher than 4 were tagged as non-
negative. In few cases when the number of definitely 
tagged recordings was not sufficient a 5% tolerance was 
applied to the separation threshold. All EEG recordings for 
the selected participants were used during the experiments, 
which totals to 400 EEG recordings. 

The classification performance of the trained models is 
evaluated in terms of percentage correct detections: 
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In all experiments we trained an SVM classifier with 
radial basis function kernel. In order to find out the optimal 
training parameters for every emotion classifier, a series of 
grid searches were implemented on the development 
dataset. Grid searches were carried out for each of the 
individual descriptors, for each participant. In particular, 
the adjustable parameters of the SVM tuned during the grid 
search were: 

• boxconstraint – the box constraint C for the soft 
margin, where C is a positive numeric scalar or a 
vector. 

• rbf_sigma – a positive number specifying the 
scaling factor in the Gaussian radial basis function 
kernel. 

The grid searches ranged between 0.1 and 100 for both 
parameters. The optimal values found during the grid 
search were used during the evaluation of each detector. A 
total of 200 grid searches were conducted. 
 

IV. DETECTION OF NEGATIVE EMOTIONS 
 

The evaluation of the features is conducted through the 
use of a detector of negative emotional states, presented in 
[1], which is based on the following principle: 

The training data set, composed of the most indicative 
examples of negative and non-negative recordings, was 
used to train a person-specific SVM classifier. The model, 
generated this way, was then tuned on the development 
dataset, so that a person-specific decision threshold Tr can 
be computed: 
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where Dneg and Dpos are the portions of development data 
consisting of n recordings with negative tags and m with 
non-negative tags (neutral or positive).  

During the evaluation of each classifier, the threshold 
(14) was used for making a decision for each recoding. The 
person-specific recognition accuracy for each individual 
descriptor was computed based on the results for all 
recordings. 

 
V. EXPERIMENTAL RESULTS 

 
Based on the common experimental setup, described in 

Section III, we performed a comparative study of the ten 
EEG descriptors. The experimental results are presented in 
Tables 1 and 2. In Table 1 we present the averaged 
classification accuracy for each individual descriptor and in 
Table 2 the results per participant. 

In Table 1 a comparison between the recognition 
results, observed for each feature is shown. The first 
column shows the feature name, whereas the features are 
ordered in descending order with respect to their 
performance – the feature that had highest average 
accuracy is placed first, while the feature with lowest 
average accuracy is respectively placed last, on the bottom 
of the table. The second column shows the highest 

classification accuracy, observed for each feature, while in 
the third column the lowest achieved accuracy is shown. In 
the fourth column we present the average accuracy 
observed for each feature. In the fifth and final column we 
can see the percentage of successful classifications. This 
comparison is made, because in some cases the trained 
models were not able to correctly classify the signals and 
reach a solution for the given task. 
 
TABLE 1. CLASSIFICATION ACCURACY ACHIEVED BY THE FEATURES 
 
Feature 
name 

Max 
accuracy

Min 
accuracy 

Mean 
accuracy 

Successful 
classification 

MAVFDNS 87.0 % 59.1% 68.7 % 90 % 
MAVSDNS 82.6 % 58.3% 68.6 % 80 % 
Mobility 75.0 % 59.1 % 67.0 % 90 % 
MAVSDS 73.9 % 59.1 % 66.6 % 100 % 
Complexity 78.3 % 59.1 % 66.0 % 90 % 
Energy 81.8 % 58.3 % 65.7 % 100 % 
Activity 70.8 % 59.1 % 64.0 % 80% 
MAVFDS 68.2 % 54.5 % 63.8 % 100 % 
St. deviation 68.2 % 59.1 % 63.4 % 100 % 
Mean value 72.7 % 59.1 % 62.9 % 90% 
 

As presented in Table 1, we observed the highest 
classification accuracy for the mean of the absolute values 
of the first and second differences of the normalized signal 
(MAVFDNS and MAVSDNS), equal to 68.7% and 68.6%. 
Overall, the more complex of the six statistical features 
displayed higher classification capabilities, while the 
simpler statistical features were not as descriptive, with 
Mean value and Standard deviation having the lowest 
classification accuracy (63.4% and 62.9%) among all 
descriptors considered here. A performance division, based 
on the complexity of the feature can also be observed in 
Hjorth’s set of features, where Complexity and Mobility, 
also performed well with mean accuracy of 67% and 66% 
respectively, while the mean accuracy of the Activity 
parameter was 64%. 

In Table 2 we present detailed information about the 
recognition accuracy observed for each individual 
descriptor, on the dataset of the particular participant. The 
cases, in which the classifier failed detect the data correctly 
are marked with “X”. 

 Although most of the examined features showed 
similar performance, some variations did exist. One such 
example are Hjorth’s descriptors, which were 
computationally expensive but led to an increase in the 
recognition accuracy. Another case where difference in 
performance was observed was during classification with 
Mean value as a descriptor. This feature showed 
performance inconsistencies and the recognition accuracy 
varied greatly, depending on the grid searched parameters, 
used for the creation of the SVM classifier.  

 
VI. CONCLUSIONS  

 
A study of the applicability of ten time-domain features 

and their informative value with respect to classification 
accuracy capabilities was carried out on the DEAP dataset. 
We ranked these features with regard to the recognition 
accuracy. 
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TABLE 2. CLASSIFICATION ACCURACY OF THE EVALUATED DESCRIPTORS PER PARTICIPANT. 
 

Features: Par. 02 Par. 11  Par. 17 Par. 21 Par. 22 Par. 24 Par. 28 Par. 29 Par. 30 Par. 32 
Mean Value 66.3 % 68.2  % 59.1 % 60.9 % X 72.7 % 62.5 % 56.5 % 60.9 % 59.1 % 
St. Deviation 61.6 % 59.1 % 68.2 % 60.9 % 68.2 % 59.1 % 62.5 % 65.2 % 65.2 % 63.6 % 
MAVFDS 61.6 % 54.5 % 68.2 % 65.2 % 68.2 % 63.6 % 66.7 % 56.5 % 69.6 % 63.6 % 
MAVFDNS 66.3 % X 68.2 % 65.2 % 68.2 % 63.6 % 62.5 % 78.3 % 87.0 % 59.1 % 
MAVSDS 66.8 % 63.6 % 72.7 % 65.2 % 72.7 % 68.2 % 62.5 % 60.9 % 73.9 % 59.1 % 
MAVSDNS 61.6 % 63.6 % 72.7 % X 63.6 % 68.2 % 58.3 % 82.6 % 78.3 % X 
Activity 56.3 % 59.1 % 59.1 % X 68.2 % X 70.8 % 65.2 % 65.2 % 68.2 % 
Mobility 61.6 % 63.6 % 68.1 % X 63.6 % 68.2 % 75.0 % 73.9 % 69.6 % 59.1 % 
Complexity 61.6 % 68.2 % 59.1 % X 63.6 % 68.2 % 62.5 % 78.3 % 73.9 % 59.1 % 
Energy 58.3 % 59.1 % 63.6 % 69.6 % 68.2 % 81.8 % 66.7 % 60.9 % 69.6 % 59.1 % 

 
The highest average accuracy was achieved with the 

mean of the absolute values of the first differences of the 
normalized signal (MAVFDNS) – 68.7%. The feature with 
the lowest average accuracy was mean value – 62.9%. 
Also, the observed results indicate an absolute increase in 
recognition accuracy with 0.9%, when compared to the 
results reported in previous related work [2]. 

The future research will aim at improvement of the 
recognition accuracy of negative emotions from EEG 
signals, based on combinations of the most discriminative 
descriptors.  
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