
ANNUAL JOURNAL OF ELECTRONICS, 2014, ISSN 1314-0078

200

Reducing Energy Consumption in Asynchronous
and Synchronous Data Transfers

Lubomir Valeriev Bogdanov and Racho Marinov Ivanov

Abstract – Deeply embedded systems use general purpose

microcontrollers that have a fixed inner architecture. Each
chip houses many peripheral modules and usually not all of
them are used. In this paper we try to better utilize the unused
resources of a chip in the favour of reducing the energy
consumption. The asynchronous and the synchronous
interfaces are the focus of our studies.

Keywords – embedded systems, energy optimization,
asynchronous/synchronous interfaces.

I. INTRODUCTION

 The following paper shows an attempt to reduce the
energy consumption of an embedded system by better
utilizing the unused UART and SSI modules. The tested
boards are Texas Instruments’ EK-LM4F232 using an
ARM Cortex-M4 based microcontroller. The mentioned
modules are in excess, having 8 x UART and 4 x SSI.
 The main idea behind the experiment is to reduce the
time of the transmission frame which in turn would lead to
energy savings. The problem that needs researching is
whether the dynamic power of the additional modules
would add up and exceed the time-energy savings or not.
That’s why we must test this case and use the two possible
types of data transfers:

 Asynchronous
 Synchronous

Intuition makes us think that the fixed baud rate of the
asynchronous data transfers would exclude the possibilities
for energy reduction using time reductions. On the other
hand the synchronous data transfers will achieve such
reductions because the time length of the bit can be varied.

II. THE ASYNCHRONOUS CASE

 Even though the UART interface may seem outdated,
the purpose of the experiment is independent of the specific
interface. All that matters is that the bit time length is
standardized and is not related to the system’s main clock.
This means that as the system frequency increases, the
energy consumption will also increase. This is due to the
fact that dividers are used inside the module to scale down
the frequency.
 The energy optimization is not possible unless we make
some additional changes to the system. One of the
approaches is to increase the baud rate. But in our case we

consider this parameter as a constant –it’s a decision of the
firmware developer. Next, the only possible solution is to
look for hardware enhancements that would lead to energy
reduction.
 In Fig. 1 a basic approach for UART data transfer is
shown between two devices. Each data token is at least ten
bits wide (1 start, 8 data and 1 stop bit) [1]. Let’s assume
we have a fixed number of data tokens that need to be
transferred from device A to device B. In this case we use a
single UART.

UART 0

Memory

Microprocessor

Memory

Microprocessor

UART 0

DEVICE A DEVICE B

Fig. 1. Single channel transfer of data tokens over an
asynchronous interface.

At any instant of time we can transmit only a single

data token. The reading and writing is buffered (exactly the
case of the UARTs in the LM4F232 [2]). The
microprocessor will have to wait in an endless loop before
the last data token is send from the UART buffer. During
this time no other code can be executed.

The first obvious energy optimization can be achieved
exactly in this loop. The ARM Cortex-M microprocessors
can execute the WFI (Wait For Interrupt) instruction [3]
which will gate off the clocking signal from the core
without stopping the generator and the rest of the
peripheral modules. The only energy leak in this case
would be the one induced by the static power of the core
and the additional stack push/pop upon entering the sleep
state.

Then we can further develop this case by trying to
utilize the hardware better. As we previously stated the rest
of the UART modules remain unused. If we make a multi-
channel communication link, the time for transmitting one
array of data tokens would be reduced. This means that the
energy for the transmission may be reduced and this
statement must be checked with an experiment. For a
successful optimization the energy reduction due to the
speed up must compensate the data processing overhead of
the message aggregation. The multi-channel interface
would require that the message be decomposed into small

L. Bogdanov is with the Department of Electronics, Faculty of
Electronic Engineering and Technologies, Technical University
- Sofia, 8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria, e-mail:
lbogdanov@tu-sofia.bg

R. Ivanov is with the Department of Electronics, Faculty of
Electronic Engineering and Technologies, Technical University
- Sofia, 8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria, e-mail:
r.ivanov@tu-sofia.bg

ANNUAL JOURNAL OF ELECTRONICS, 2014

 201

chunks of data tokens at the transmitter side and be brought
back together (aggregated) at the receiver side. We cannot
avoid this process by any means. The multi-channel
version of the example is shown in Fig. 2. Notice the
number of the transferred data tokens per single
communication time quant.

Memory

Micro-
processor

Micro-
processor

DEVICE A DEVICE B

UART 1

UART 2

UART 3

UART 4

UART 5

UART 0

UART 6

UART 7

UART 1

UART 2

UART 3

UART 4

UART 5

UART 0

UART 6

UART 7

Memory

Fig. 2. Multi-channel transfer of data tokens over an

asynchronous interface.

 Again we can apply the sleep mode here – the
microprocessor operates at much higher frequency than the
UART modules, meaning that the time for filling their
buffers is negligible compared to the time for sending the
data tokens over the interface.

III. THE SYNCHRONOUS CASE

The same experiment can be conducted with a
synchronous interface, such as the SPI. With the SPI, the
time length of one bit is not constant and is reduced with
the increase in system frequency. Again the data transfer is
buffered and that’s why we can also use the ARM Cortex-
M sleep mode. There will be a slight difference compared
to the UART experiment - the number of the SPI modules
is 4. Furthermore, the interface being a synchronous one
would require a clocking signal. The latter means that if we
increase the number of the communication channels, then
we increase the number of the clocking signals. The
clocking signal is a square wave with a 50 % duty cycle
that produces many 0-to-1 and 1-to-0 transitions during the
transmit time frame. This yields high dynamic power and
the energy optimization due to the time decrease might be
overwhelmed by the consumption of the additional clocks.

Texas Instruments have named their SPI module SSI
because it can operate in various modes, including the
legacy SPI. In our experiments we use SPI mode, CPOL =
1, CPHA = 1 and 8-level buffered data transfers.

IV. EXPERIMENT SETUP

The setup of our experiment is shown in Fig. 3. We use

two ЕK-LM4F232 boards whose UART interfaces are

connected together. We spare UART number 0 for
controlling the experiment through a PC. Actually we
needed two PC hosts due to technical difficulties
concerning closed source software. We have also used one
GPIO of each LM4F232 microcontroller for a SYNC
signal. The SYNC signal is used to measure the time
duration of the transmission/reception. The IDD(t) signal is
produced by a differential amplifier built into the demo
board. It represents the instantaneous current consumption
of the microcontroller. Those two signals (SYNC and
IDD(t)) are fed into a Tektronix oscilloscope.

RX Device
(EK-LM4F232)

TX Device
(EK-LM4F232)

UART 1

UART 2

UART 3

UART 4

UART 5

UART 6

UART 7
Transmission
 START

Transmission
 START

OSCILLOSCOPE

SYNC IDD(t)

PC 1 PC 2

U
AR

T 0

U
AR

T 0

SYNC IDD(t)

Fig. 3. Experimental setup for measuring energy consumption in

one-way UART data transfer.

Thus, if the current consumption does not change
during the time frame (outlined by the SYNC signal), we
can measure the energy:

()RXDDRXTXDDTXDD

RXTXTOT

tItIV
EEE

Δ+Δ=
=+=

...
 (1)

where ETOT is the total energy spent for one complete data
transmission, IDDTX/IDDRX – the current consumption of the
transmitter/receiver for the time period ΔtTX/ΔtRX and VDD
= 3,3 V. The sum:

RXTXTOT ttt Δ+Δ= (2)

represents the total amount of time tTOT that is consumed by
the transmitter and the receiver (not elapsed time) to make
one data transmission. Exactly this time is of interest to us.
The current consumption is technology- and architecture-

ANNUAL JOURNAL OF ELECTRONICS, 2014

 202

dependant and won’t be discussed in this paper. The energy
reduction in the receiver-transmitter system can be
achieved through reduction in tTOT.

The firmware of the devices is separated in two projects
– one for the UART, and one for the SSI case. Each project
is further split into a one channel and multi-channel
versions. Then it is further split into two – with and without
sleep() API calls. The latter variations are implemented
with #if-else directives. The test code remains exactly the
same throughout the projects except for the communication
modules initializations and low-level send/receive
functions (the first case is for UART, the second – for SSI).
We use GCC cross compilers for ARM [4] and both codes,
the receiver’s and the transmitter’s, have been compiled
with the same version and command line parameters of the
tools. The StellarisWare libraries [5] are also identical. We
send 910 chars from device A to device B in both cases.

In our test we use bare-metal firmware whose structure
is shown with the pseudo-code below.

//Transmitter side
while(1){
 waitForStartSignal()
 SYNC = 1
 sendMessageOnUART()
 SYNC = 0
}

//Receiver side
while(1){
 SYNC = 1
 sendStartSignal()
 waitForEntireMessage()
 verifyMessage()

SYNC = 0
}
The sleep API is added in the waitForEntireMessage()

function that actually does nothing useful - it just loops
endlessly while the message is being received in UART
interrupt handlers.

The multi-channel version slightly differs from the
single channel one. The init() (not shown) function is
altered. Then the decomposeMessage() and the
aggregateMessage() functions are added.

 //Transmitter side
while(1){
 waitForStartSignal()
 SYNC = 1

decomposeMessage()
 sendMessageOnUARTs()
 SYNC = 0
}

//Receiver side
while(1){
 SYNC = 1
 sendStartSignal()
 waitForEntireMessage()

aggregateMessage()
 verifyMessage()

SYNC = 0
}

Also the number of the interrupt handlers is increased. The
multi-channel version with sleep() uses interrupt handlers
in the transmitter as well (for wake-up).

The synchronization method is the following:
 For a single-channel data transfer the size of the

packet with tokens is 8. They are sent sequentially and
when the last member of the packet is sent the transmitter
immediately sends a new packet. The receiver is able to
process the incoming packets without any delay because
the work frequency of the microprocessor is higher than the
frequency of the UART module.

 For a multi-channel data transfer the size of the
packet is 7x8 tokens (and 4x8 for the SSI case). First, the
microprocessor fills the module 1 buffers. Then it
immediately fills the module 2 buffers and so on. When it
reaches the last module, the Cortex-M4 loops endlessly
until the last token from it has been sent. When this
happens, the process starts over immediately. The receiver
device gets the portions of the packet on each UART
module. When the last packets is received, the message is
aggregated from the receive buffers. The first buffer
contains the first 8 data tokens, the second – the second 8
data tokens and so on.

As we can see from the above descriptions, the
complexity of the hardware, as well as the complexity of
the software, is increased. This complication is done to
achieve energy reduction. The changes have to be
considered in the early stages of the ESL design. If the
hardware of the embedded system had already been
produced, then this optimization would not be applicable.
Furthermore – if the device resources are limited (less
UART/SSI modules, less memory, less µP speed), the
optimization will fail again.

V. RESULTS

The energy measurements are conducted for 5 different

system frequencies – 10, 20, 40, 50 and 80 MHz. The
results for the UART and SSI versions are shown in Fig. 4
and Fig. 5 respectively.

Fig. 4. Microcontroller energy consumption using UART data
transfers between two EK-LM4F232 boards.

The first thing that should be noted, before jumping to

conclusions, is that the flash memory of LM4F232 can
work with up to 40 MHz of system frequency. For
frequencies higher than this value read/write buffers are

ANNUAL JOURNAL OF ELECTRONICS, 2014

 203

turned on and the flash clock is reduced. That’s the reason
we see an energy drop at 50 MHz.

Fig. 5. Microcontroller energy consumption using SSI (SPI) data

transfers between two EK-LM4F232 boards.

VI. CONCLUSION

Observing Fig. 4 we can conclude that the optimization

method is correct. Trace D is the best case where both
multi-channel connection and sleep APIs are combined.
This drastic reduction is achieved mainly through time
reduction – 166,0 ms for 80MHz/1xUART and 32,8 ms for
80MHz/7xUART.

The synchronous case yielded completely different
results, as shown in Fig. 5. The shape of the graph is
different due to the inversely proportional relation of time
and frequency. This effect was expected [6]. What is
interesting is that there is almost no optimization between
the normal and the sleep versions. Furthermore – trace D
rises high above trace C at high speeds. Even though the
microcontroller is a black box to us, we suppose that this
increase comes from the fact that at high frequencies the
energy reduction due to the time reduction is canceled out
by the dynamic power of the additional SSI modules. On
the other hand the UART cases introduce no such effect
due to the vast time reduction (166,0 ms for 1xUART and
32,8 ms for 7xUART) which is not that well seen in the
SSI (9,37 ms for 1xSSI and 7,49 ms for 4xSSI).

Fig. 6 shows a graph of the relative energy reduction
achieved with the multiple channel data transfers in the
cases with and without sleep modes. We’ve calculated
these values by simply dividing the energy value of the
single over the multi-channel case (e.g. Reduction =
E(1xSSI) / E(4xSSI)). The biggest relative reduction
appeared in the UART case – approximately 4,5 times.

Fig. 6. Energy reduction in single/multiple channel data transfers
with UART and SSI interfaces using no sleep and sleep modes.

REFERENCES

[1] J. Axelson. Serial Port Complete: COM Ports, USB Virtual
COM Ports, and Ports for Embedded Systems, Second Edition,
Lakeview Research LLC, 2007.
[3] Cortex-M4 Devices, Generic User Guide, ARM, 2010.
[2] Stellaris LM4F232H5QD Microcontroller, Data Sheet, Texas
Instruments, 2012.
[4] R. Stallman. Using the GNU Compiler Collection for GCC
version 4.5.2, GNU Press, 2008.
[5] Stellaris Peripheral Driver Library, User’s Guide, Texas
Instruments, SW-DRL-UG-9107, 2012.
[6] R. Ivanov, L. Bogdanov. Dynamic Frequency Scaling in
Embedded Systems, Annual Journal Of Electronics, p.95 – 98,
ISSN 1314-0078, TU-Sofia, 2013.

