
ANNUAL JOURNAL OF ELECTRONICS, 2014, ISSN 1314-0078

192

Embedded Software Resilience

Piet Cordemans, Edouard Thyebaut, Davy Pissoort and Jeroen Boydens

Abstract – Soft errors are faults which are not caused by de-
fective hardware, rather they are induced due to noise or
transient events. In this paper we describe defensive pro-
gramming and redundancy techniques to detect and deal with
soft errors. These techniques are categorized according to
data and control flow errors.

Keywords – Embedded Software, Software Resilience, Soft
Errors

I. INTRODUCTION

 Electronic systems, more specifically microcontroller
systems, are susceptible to transient events and noise due to
electromagnetic interference or radiation. These issues
might introduce a sudden change of state in a single bit.
Errors induced this way lead to erratic behavior. Due to the
non-deterministic nature of these events, it is impossible to
predict where and when these errors will occur.
 In this paper we focus on software-based techniques for
embedded systems to detect and deal with bit flips due to
such issues.
 In the introduction, we define soft errors, identify critical
areas in a typical microcontroller based system and intro-
duce basic concepts in software-based resilience. Then, in
Section 2 we describe control flow errors and detection
techniques. Finally, we describe data flow errors and detec-
tion in Section 3.

A. Soft errors

 Soft errors are erroneous signals or states, which are not
caused by defect of a particular component or a mistake in
design or implementation [1]. Rather, a soft error, also
known as single-event upset, is the change of an instruction
or a data value in a program, which leads to an erroneous
state. Soft errors are non-deterministic, as such it cannot be
ascribed to a particular system state or state transition. Root
causes of soft errors are due to externally triggered events
caused by electromagnetic, electrical and radiation issues,
such as bit flips, noise and transient events. Transient
events are temporary bursts of energy which are typically
undesired. For instance overshoot at the rising edge of a
block signal. Noise and transient events induce bit flips in
registers and memory locations, which in turn affect system
state, control flow or lead to incorrect data results.
 While rebooting the system typically solves the problem,
this only lasts until a new soft error occurs. Furthermore,
rebooting interrupts the continuous operation of the system

and might result in the loss of data or temporary control.
Moreover, soft errors are typically hard to detect, as it is
impossible to predict which registers or memory locations
will be affected.
 Typically, hardware-based solutions are proposed to deal
with soft errors, such as shadow registers, watchdog timers,
triple mode redundancy, etc [2]. However, when hardware
is in production, it is costly to make changes to its design.
Software solutions are typically less costly, especially
when a solution is introduced after the hardware is pro-
duced [3].

B. Critical areas

 Soft errors can be classified according to the resulting
effect. This effect depends on the place of the fault in the
underlying hardware of the microcontroller-based system.
 On the one hand, when a soft error affects the data mem-
ory, it typically results in corruption of data. Data flow
errors are also introduced when values from (or pointers to)
the data memory region are loaded in registers and a bit flip
occurs on that particular register.
 On the other hand, when the instruction pointer becomes
corrupted, soft errors have introduced a fault in the control
flow of the microcontroller. Instruction pointer corruption
has multiple potential causes:
 (1) a bit flip might occur at the instruction pointer regis-
ter.
 (2) When calling a function, the current instruction
pointer is pushed onto the stack. When the function returns,
the instruction pointer is popped from the stack and placed
in the instruction pointer register. This is called the return
address and this address might be corrupted when that
particular memory region on the stack undergoes a bit flip.
 (3) If the stack pointer, this is the register containing the
address of the current stack frame, is corrupted, the current
function context becomes corrupted. Furthermore, as the
value of the address of the previous frame is also stored on
the stack, the entire stack call chain becomes invalid.
 (4) When calling into a function, this is effectively im-
plemented as jumping to the memory address where the
function has been defined. However, when the value of the
address of the function has been altered in the program
memory, this will result in executing arbitrary instructions.
These instructions might be part of the function, or lie
outside the function scope. When an arbitrary instruction in
the function is executed first, the function itself might not
be correctly initialized or missed some critical operations.
Outside the function scope, another distinction can be made
in executing instructions defined by the programmer or
executing in an undefined region of the program memory.
For instance when jumping to an unintended function. On
the other hand, when the address lies outside the defined
program memory range, the instruction pointer will execute
undefined behavior.

P. Cordemans and J. Boydens are with the Technology cluster
Computer Science,

D. Pissoort, is with the Technology Cluster ESAT,
E. Thyebaut serves as an intern at the Technology cluster

Computer Science,
Faculty of Engineering Technology, KU Leuven campus Os-

tend, Zeedijk 101, 8400 Ostend, Belgium, e-mail:
{piet.cordemans, jeroen.boydens, davy.pissoort}@kuleuven.be

ANNUAL JOURNAL OF ELECTRONICS, 2014

 193

 (5) When the destination address is computed, a jump
might have an incorrect destination address when one of
the operands is altered by a bit flip.
 (6) Conditional branches are susceptible to soft errors in
two manners. One the one hand, as with (4) the destination
address of the alternative condition might have been cor-
rupted. On the other hand, the condition on which the ap-
propriate branch has to be decided might be corrupted. This
can be ascribed to a bit flip in the register which contains
the arithmetic and logic operation flags.

C. Software-based resilience

 When dealing with soft errors, the particular nature of
these errors requires a meticulous implementation of soft-
ware-based techniques to obtain resilience. As any register,
in particular the instruction pointer and stack pointer, or an
arbitrary value in data memory and program memory re-
gions are susceptible to soft errors, the problem might
manifest in any value or instruction.
 Consequently, when techniques dealing with these issues
are applied on the level of individual instructions, func-
tions, modules or the system, they should be applied to any
given instruction, function or module. Or else these tech-
niques will not cover the scope of the complete system and
soft errors will remain undetected and uncorrected. Em-
bedded software techniques dealing with soft errors can be
put into three categories: defensive programming tech-
niques, redundancy and hybrid solutions involving hard-
ware.
 Defensive programming is a design technique at function
level to ensure correct function execution under unforeseen
conditions. In general, the programmer reduces the number
of assumptions and tries to handle all possible error states.
Assumptions on data are implemented as assertions in
preconditions and postconditions.
 Preconditions are conditions which should hold true
when the function is entered. For instance these include
valid ranges of input values, the necessary memory reser-
vation, particular locks obtained or the system is in a spe-
cific global state, which is required to execute the function.
 Postconditions are conditions which will hold true when
the function exits and returns to its calling context. For
instance these include particular ranges of output values,
freeing or obtaining a specific memory chunk, obtaining or
releasing a certain lock or putting the system in a particular
state.
 In defensive programming, preconditions and postcondi-
tions are defined in a set of assertions [4], which are appro-
priately checked when entering and exiting a function. If
any of these assertions fail, an error is raised.
 Redundancy is a general concept, which can be applied
at the level of values, functions, modules or even the sys-
tem.
 At the level of values, redundancy can be implemented
on the one hand as maintaining copies of values. Multiple
storage is effective as the non-deterministic nature of soft
errors implies that the probability of a common error in a
value is virtually non-existent. However, the cost of redun-
dancy is reflected in multiplying the size of the memory
needed every time for every additional copy. On the other
hand, storing the entire value is unnecessary as techniques

such as parity or cyclic redundancy checks allow to check
the integrity of a particular value with a minimal overhead
in storage.
 Redundancy at the function level can be applied as a
function can be identically implemented or implemented
with similar externally observable behavior. By executing
both functions and comparing the results it is possible to
detect a mismatch caused by a soft error between the two
implementations of the functions. Alternatively, instead of
duplicating the entire function, function arguments and
return values can be duplicated in the function header itself.
By checking the values of the original parameter and the
copied parameter, soft errors will be detected.

II. CONTROL FLOW ERRORS

 Control flow errors are soft errors which result in a cor-
rupted instruction pointer or lead to unexpected execution
paths of the system.

A. Functions

 When using defensive programming at function scope by
validating preconditions, starting to execute the function in
a faulty state is signaled. Furthermore by asserting the
postconditions, soft errors on function completion will also
be detected. Combined, these predicates will signal the
execution of unexpected paths in the embedded software.
 Function redundancy can be implemented by replicating
the function as a whole or duplicating function parameters
and return values. By asserting the correspondence of the
results, soft errors introduced in a single function scope are
detected. An alternative is to use a different implementa-
tion of the function with similar external behavior to avoid
common-mode errors, i.e. errors with a common cause.
 In order to detect an astray instruction pointer, function
tokens can be introduced [5]. A function token is a constant
value assigned to the function at compile-time. Before the
function is called, the value of the function token is pushed
onto a stack data structure. When entering and leaving the
function scope, the top value is compared with the function
token. If they do not correspond, the instruction pointer
was not supposed to contain an address of the function
scope. Mark that, when leaving the function the value is
popped from the stack.
 A proof of concept of these three techniques at function
level has shown that they are complementary to each other.
Defensive programming is able to signal a faulty state
while executing the function. Whereas function redundancy
is able to detect soft errors within the range of expected
values. Finally, function tokens allow to detect erratic be-
havior of the instruction pointer. The same stack is used to
push the function address which serves as the function
token, as well as the arguments and return values. Defen-
sive programming is implemented as assertions on the
expected boundary conditions when entering and leaving
the function.

B. Conditional branches

 Conditional branches allow to execute different paths in
the program. When soft errors affecting the decision are

ANNUAL JOURNAL OF ELECTRONICS, 2014

 194

introduced, these lead to a faulty state and execution path
for the rest of the program. Therefore special consideration
is given to the registers, variables and addresses affecting
the condition. Introducing redundancy at condition check-
ing covers the condition code register [3]. In Figure 1, the
decision tree is shown. By duplicating decision and address
variables and comparing their result the entire conditional
branch is covered.

decision

duplicate duplicate

True block False blockError

T F

T TF F

Fig. 1. Conditional branch duplication

C. Program memory

 Although the techniques in Subsection B and C are pro-
found, redundancy techniques and explicit assertions intro-
duce overhead which is typically a criterion to minimize in
embedded systems. There are two programming techniques
which deal with an astray instruction pointer. They affect
the program memory directly without affecting the run-
time behavior or required memory.
 On the one hand, unused locations in the program mem-
ory are potentially dangerous when an astray instruction
pointer contains such an address. Filling these locations
with “no operation” instructions avoids unwanted behav-
ior [5]. Before the end of the program memory is reached
an error handling routine can be provided to catch the lost
instruction pointer and take an appropriate corrective ac-
tion.
 On the other hand, immediately calling the error handler
at every unused memory location is an improvement to the
previous technique. However, this requires that microproc-
essor architecture supports branches to every program
memory location in a single program word.
 Both techniques will not affect the run-time behavior in
a normal situation nor require extra memory allocation.

D. Interrupts

 An interrupt is an external signal which results in chang-
ing the value of the instruction pointer. It is an asynchro-
nous event, which is hard to differentiate from a soft or
transient error. Two complementary precautions deal with
unintentionally invoked interrupts by soft errors.
 Keeping the interrupt service routine as short as possible
is a design directive in order to properly detect as many
interrupts as possible and avoid interrupt masking of a
lower or equal priority level. However, this design directive
also has its merit in order to mitigate the effects of a soft

error induced interrupt. When an interrupt is raised, the
interrupt is only registered and the normal execution is
resumed as soon as possible. When the state machine
checks if any interrupts have been registered, it can per-
form additional checks, to see if an interrupt effectively
was raised by an intended external signal rather than a soft
error induced interruption.
 Microcontroller systems include a number of interrupt
vectors, which might not be used in an application. How-
ever, if a soft error is introduced these interrupt vectors
might be called and subsequently unexpected instructions
are executed. In order to prevent the unexpected behavior,
unused interrupt vectors can be implemented with a call to
an error handling routine.
 As in Subsection II.C these techniques do not affect the
normal run-time behavior and do not have an impact on
memory usage.

III. DATA FLOW ERRORS

 Data flow errors are soft errors which affect data values
or data pointers. These can lead to erroneous data or miss-
ing data. Furthermore if the data is used to decide upon a
transition to a new state, data flow errors might lead to a
faulty state. Data flow error solutions typically involve
redundancy, either in space (duplication, error correction
codes) [6] or in time (multiple input read).

A. Data memory

 Variables can be duplicated and synchronized during
execution. Data flow errors are detected when the values
are out of sync.
 When storing data, data can be duplicated in the same
physical memory system or duplicated across different
non-volatile memory systems. Though some hardware
technologies are more susceptible to soft errors of a spe-
cific kind than other non-volatile memory systems, the
random nature of soft errors ensures there is a very low
probability that the duplicated data will also be affected.
Therefore there is no reason related to soft errors to dupli-
cate the data across multiple memory systems. However, if
hardware would be damaged permanently, data integrity of
both original and duplicated values is compromised.

B. Error detection codes

 Variable duplication has a severe impact on the usage of
memory. Namely, a multiple of the minimal amount is
needed depending on the number of duplicated values.
 In contrast, error detection codes use less memory, with
guarantees that a specific number of bit errors depending
on the algorithm can be detected. For instance a parity bit is
able to detect any odd number of bit errors. On the other
hand, a Cyclic Redundancy Check (CRC) is used exten-
sively in data networks and is suited to detect multiple bit
errors in a single data word.

C. Input and output

 When capturing a digital signal, the current voltage level
on the input pin might be the result of a transient error. In

ANNUAL JOURNAL OF ELECTRONICS, 2014

 195

order to prevent reading a faulty level, a burst of reads is
needed to capture the signal. The majority of levels read
can be considered as the correct level to capture.
 Considering a continuous analog signal, a burst of reads
might give an average level of the analog value. However,
when interested in the continuous behavior, it might be
more interesting to check if the next value is in the range of
the maximum slew rate when considering the previous
value.
 Finally when generating an output, the output value is
stored in a register resembling the value of the output pin.
These I/O registers can be regularly overwritten in order to
prevent any soft errors occurring at that register.

IV. FUTURE WORK

A. Design patterns

 A first direction of future work is to introduce design
patterns for the strategies in this paper. A design pattern is
an informal way of documenting a solution to a design
problem. A pattern does not only describe why the pro-
posed solution to a particular problem is considered a good
one, it also gives an example and explains the relationship
of the pattern to other patterns. A pattern language for
software-based embedded resilience techniques collects
these patterns.

B. Measurements

 A second direction of future work is located in the field
of the effect of the strategies proposed onto the embedded
system. Redundancy is a common solution in both control
and data flow errors. However, a typical characteristic of
redundancy is that it requires more memory. This also
increases the probability of the occurrence of a soft error.
This trade-off should be careful considered and more data
is needed to decide upon the extent of duplication needed,
its cost and problems associated with it. Currently, imple-
mentations of the various techniques are developed which
will be evaluated.

C. Corrective actions

 Finally, when detecting a soft error, a corrective action
must be taken. There are several options including, reset-
ting the system, putting the system in a generic safe state or
performing error recovery. These actions can be performed
by techniques such as voting mechanisms, applying correc-
tion codes, introducing transactional behavior or reverting
to a golden reference.

D. Invariants

 In defensive programming, the concept of a condition,
which should hold true at specific moments during execu-
tion is called an invariant. As it is impossible to continu-
ously monitor all these assumptions pragmatic approaches
should be adopted when dealing with soft errors. For in-
stance, loop invariants could be asserted every time the
loop condition is checked.

V. CONCLUSION

 Hardware-based solutions to deal with soft errors are
costly and must be introduced during design. Alternatively,
software-based solutions can be implemented afterwards
and do not require any additional resources.
 This paper describes software techniques to detect soft
errors in data and control flow. By applying these tech-
niques, embedded software resilience can be improved.
 First, following guidelines concerning unused program
memory locations and interrupt vectors do not require any
investment, while providing a basic solution for astray
instruction pointers.
 Secondly, redundancy techniques can be applied at any
given level, both in control flow and data. However, these
techniques have an impact on the memory footprint.
 Finally, when defensive programming is applied at the
function level, it allows to detect erroneous behavior early
on. Consequently, appropriate corrective actions could be
undertaken.

REFERENCES

[1] S. A. Asghari, O. Kaynak and H. Taheri, "An Investigation
into Soft Error Detection Efficiency at Operating System Level,"
The Scientific World Journal, vol. 2014, 2014.
[2] R. Carlton, G. Racino and J. Suchyta, "Improving the
Transient Immunity Performance of Microcontroller-Based
Applications," 2005.
[3] B. Nicolescu and R. Velazco, "Detecting soft errors by a
purely software approach: method, tools and experimental
results," in Design, Automation and Test in Europe Conference
and Exhibition, 2003, 2003.
[4] R. Venkatasubramanian, J. P. Hayes and B. T. Murray, "Low-
cost on-line fault detection using control flow assertions," in On-
Line Testing Symposium, 2003. IOLTS 2003. 9th IEEE, 2003.
[5] K. Wilken and J. P. Shen, "Continuous signature monitoring:
low-cost concurrent detection of processor control errors,"
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 9, no. 6, pp. 629-641, 1990.
[6] M. Maghsoudloo, H. R. Zarandi and N. Khoshavi, "An
efficient adaptive software-implemented technique to detect
control-flow errors in multi-core architectures," Microelectronics
Reliability, vol. 52, no. 11, pp. 2812-2828, 2012.
[7] "Microcontroller in a Harsh Environment,", Technical report
at Atmel, 2007.
[8] A. Li and B. Hong, "A low-cost correction algorithm for
transient data errors," Ubiquity, vol. 7, no. 21, pp. 2-15, 2006.

