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Abstract – The precise determination of the velocity of rail 

vehicles is fundamental for the use of modern train control 

systems and logistics. Eddy current sensor systems allow for a 

slipless estimation of the velocity based on cross-correlation 

techniques. Those suffer in precision when driving with very 

low velocity or in area with high accelerations. This paper 

presents an alternative estimation of the velocity in these time 

intervals by employing correlation optimized warping, a 

variant of the dynamic time warping algorithms widely used 

for example in speech recognition.. 
Keywords – Velocity Estimation, Correlation, Dynamic 

Programming, Eddy Current Sensor 
  

I. INTRODUCTION 
 

The reliable and precise determination of the velocity of 

a rail vehicle is crucial for any further tasks such as 

efficient logistics or the employment of modern train 

disposition systems to raise the amount goods transported 

on existing tracks [1]. Actual systems are built upon 

common velocity sensors like GNSS or radar systems that 

face problems when dealing with heavy environment 

conditions or shadowed areas like stations or dense forests 

[2]. In contrast, an eddy current sensor system provides 

non-contact speed and distance measurement of rail 

vehicles by measuring the magnetic inhomogeneities along 

the track and utilizes the cross-correlation technique to 

determine the time shift between the two sensors mounted 

within the housing [3]. The sensor works well and robustly 

especially at higher velocities. Nonetheless, this type of 

sensor encounters difficulties in phases of high de- and 

acceleration as well as in passages with very low speed 

maneuvers, e.g. when driving over turnouts in railway 

stations. This paper outlines a signal processing approach 

to overcome this problems in lower velocities based on so 

called warping algorithms, an specific application of the 

dynamic programming [4]. In particular, two types of 

algorithm are examined. On the one hand the classical 

dynamic time warping (DTW) [5] and on the other an 

adapted variant, the so called correlation optimized 

warping (COW) [6] are compared against the classical 

cross-correlation approach, based on a closed-loop 

correlator [7]. The warping algorithms are commonly 

employed for the task of sequence classification, where 

they are capable of distorting one sequence by stretching it 

compared to a class template. This paper makes use of this 

signal straining as it is directly proportional to the 

difference of the two signals determined by cross 

correlation.  Fig. 1 gives a system overview. As long as the 

rail vehicle stays below a certain velocity, the speed is 

determined via the two warping algorithms.  

     

 
Fig. 1. System overview of the presented algorithms. A velocity 

threshold determines if either the common closed loop correlator 

or the warping algorithms are used for velocity estimation. 

 

After driving faster, commonly on open tracks, the 

common closed loop correlator (CLC) is employed for 

estimation. 

The paper is organized as follows: Chapter II introduces 

the eddy current sensor system and its working principle. It 

also explains the commonly used cross-correlation realized 

with a CLC. Afterwards, chapter III introduces the concept 

of time warping algorithms and explains the two algorithms 

as well as how to use them for velocity estimation. Chapter 

IV principally shows the applicability of the algorithms and 

evaluates them by using simulated data. Chapter V proves 

the capability on real signals before chapter VI concludes 

the paper with a summary.   

 

II. EDDY CURRENT SENSOR SYSTEM 

 
A.  Working principle and sensor system 

 

Eddy current sensors (ECS) are commonly used to detect 

inhomogeneities in the magnetic resistance of 

ferromagnetic materials [8]. This basic approach has 

further been developed and adopted to possible 

applications on railway vehicles, including speed 

measurement and pattern recognition tasks. The ECS 

system consists of two identical sensor devices, each built 

up with a transceiver coil and two pickup coils. Both 

sensors are sequentially placed within a housing that is 

mounted on the train bogie approximately 10 cm above the 

rail head. Fig. 2 (a) depicts the principle of an ECS with a 

single unit: The transmitter coil E excites a magnetic field 

HE that induces eddy currents in metallic materials like the 

rail. The eddy currents induce an antipode magnetic field 

HEC, that generates the voltage        and        within 
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the pick-up coils    and    respectively. By 

interconnecting them differentially, the output signal 

               is a measure for rail inhomogeneities. 

These mainly result from rail clamps, turnouts and other 

irregularities, e.g. cracks or signal cables (for details see 

[3]).  

 

 

Fig. 2.  (a) Single ECS S1, (b) Example signal of ECS system 

(two sensors) s(t) when crossing a rail clamp. 

 

The signals       and       represent a stochastic 

process. Clamps produce a stationary process for rail 

vehicles driving on open tracks with constant velocity. 

Turnouts, cables, and metallic clutter represent non-

stationary signal components, whereas both parts are 

superimposed by a noise process that can be regarded as 

zero mean white Gaussian noise. The overall signal 

comprises a high signal-to-noise ratio (SNR), given that 

pre-processing low pass filters are installed in the sensor 

hardware. 

 

B.  Correlation Based Velocity Estimation 

 

The described working principle is, in contrast to vision 

based systems or Doppler principle based radar sensors, 

widely unsusceptible to environmental perturbations and, 

because of the differential setup, robust against systematic 

influences. These properties are highly desirable for a 

reliable speed measurement under rough railway 

conditions.  

 

Fig. 3.  Working principle of the described CLC. The polarity 

based approach corresponds to an interative Newton-Raphson 

minimization. 

 

Velocity estimation can commonly be achieved via 

cross-correlation of the two sensor signals s1(t) and s2(t), 

that are idealized depicted in fig. 2. (b). First approaches, 

intended and optimized for hardware realization, apply a 

CLC assuming a known sensor distance   and a measured 

time difference   . In contrast to open loop systems, the 

CLC tracks the time shift  between the signals by building 

a control loop and setting the derivative to zero. The latter 

is achieved by a modified Newton-Raphson scheme. The 

hardware is commonly realized with a polarity correlator 

for easy realization. Details on setup and working 

principles of CLCs can be found in [7].  
 

III. VELOCITY ESTIMATION WITH COW 
 

The above mentioned approaches rely on the assumption 

of a stationary stochastic process, which holds for constant 

velocity within the cross-correlation interval. Whereas this 

assumption is correct in most situations, it is heavily 

violated in low speed manoeuvres, where large changes in 

the relative velocity may occur. This is unfortunately the 

case in areas of interest, i.e. within stations, where many 

turnouts are present that additionally disturb the signals.  

The need for reliable distance estimation in localization 

scenarios makes it necessary to apply a velocity estimation 

that can cope with these situations. Therefore, we propose 

the use of a dynamic programming scheme commonly used 

in the speech processing, the so called time warping. 

 

A.  Dynamic Time Warping  

 

  Dynamic time warping tries to minimize the distance 

between to signals       and       defined with 

 (         (  ))  ∑ |(         (  ))|

 

     

 ∑  [   ]

 

     

 (1) 

by duplicating the indices of the target signal. This is done 

under the constraints, that start and endpoints of both 

signals are identical, as well as imposing monotony and 

continuity. This problem is solved with dynamic 

programming to ensure computational tractability [4]. 

Results of DTW are a warped signal and the so called 

distance matrix that reflects the distortion of the signals at a 

given time point. An example result for constant velocity 

and therefore two signals with a constant offset is shown in 

fig. 4.  

 

B.   Correlation Optimized Time Warping (COW) 

 

COW was first described as an adaption of DTW in the 

field of gas chromatography [6]. In contrast to DTW, COW 

tries to adjust the two signals piecewise. It separates the 

signals into segments of length   that can be stretched or 

compressed. Instead of the distance measure of Equation 

(1), the signal similarity is based on a cross correlation 

within the signals. Again, the amount of the distortion of 

each segment can be determined by the employment of 

dynamic programming. Therefore the segments may be 

shifted by    which must satisfy the following condition: 

      [         ] (2) 
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After shifting the segments with a so called         the 

shortened signal is compared with the target signal Z by 

adapting the segment size from     to the reference 

signal size    which is done by a linear interpolation. 

Afterwards, the signal similarity is determined by cross 

correlation. The possible segment shifts by the slack and 

the subsequent comparison of the signals is not feasible 

even for a small amount of segments. Therefore the 

problem is again solved by dynamic programming. The 

derivation of the algorithm is not in the scope of this 

contribution and can be found in [6] and [9]. An example 

for simulated data is shown in fig. 5. 

 

Fig. 4.  Exemplary result of DTW. The upper picture shows ECS 

signals at constant speed. The corresponding  distance matrix is 

shown on the lower left, emphasizing the constant signal offset. 

The warped signal (dotted line) is shown on the lower right. 

 

Fig. 5.  Exemplary result of COW. The upper half shows 

simulated eddy current signals with accelerations. The arrows 

indicate the shift of the individual segments. The lower part 

shows the warped results. 

 

IV. SIMULATION 
 

A.  Simulation Framework     

 

To verify the possibility to determine the shift of the 

eddy current sensor signals with the warping algorithms, a 

simulation was done. Therefore, several velocity profiles 

were simulated assuming a sleeper distance of 600 mm a 

sensor distance of 208 mm and a sensor frequency of 

1 kHz. Accelerations were restricted to a maximum of 

3 m/s
2
 which is the maximum achievable breaking power 

of the observed rail vehicles. Afterwards, additive white 

Gaussian noise was added to simulate real world 

disturbances. The sequences were commonly chosen to 

have the length of 1-2 seconds which corresponds to the 

common correlator length. Exemplary velocity profiles and 

their respective noise free signals are shown in fig. 6.  

 

 

 

Fig. 6. Simulated ECS signals. (a) and (c) show exemplary 

velocity profiles, (b) and (d) show the corresponding signals of 

the two sensor coils without additive noise. 

 

B.  Simulation Results  

 

All algorithms, DTW, COW as well as the CLC were 

used to determine the velocity profile within the given 

signal periods. Results for the DTW are depicted in fig. 7.  

 

Fig. 7.  Simulative results for DTW. The left side part depicts 

input and warped signals; the right side part shows the estimated 

velocity. 
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Fig. 8 shows the results for the COW which is capable to 

determine the velocity precisely.  

 

 
Fig. 8.  Simulative results for COW. The upper half depicts input 

and warped signals; the lower half shows the estimated velocity 

in the segments as dotted line, the correct profile is the solid line. 

 

V. EXPERIMENTAL RESULTS 
 

The same algorithms were used for real world data 

acquired on test drives with a tram.  Fig. 9 shows the 

results for a sequence for a train starting within a train 

station. 

 

Fig. 9.  Results for the warping of real data. The signals below 

are aligned correctly by the COW. 

 

The signals could be recovered well by the COW 

whereas the simple DTW was not capable to determine the 

correct velocity as in the simulation. This is mainly due to 

the fact that, in contrast to the correlation based quality 

measure, noise is not handled as well. The results of the 

three algorithms are qualitatively compared in Table 1. 

. 

TABLE 1. QUALITATIVE COMPARISON FOR REAL WORLD DATA 

 Complexity of 

computation 

Robustness 

against 

noise 

Precision  

v = const / 

≠ const 

CLC ++ + + / - 

DTW - -- - / -- 

COW -- + + / + 

The results indicate that COW is an alternative to the 

common CLC based velocity estimation especially in low 

velocity manoeuvers. A drawback is the high 

computational complexity. It cannot be estimated in 

advance and reaches up to several seconds even for small 

sequences. This makes them less capable for real systems 

than model based approaches recently presented in [10]. 

 

VI.  CONCLUSION 
 

The contribution proposes a novel approach to determine 

the signal shift of eddy current sensor signals for the 

purpose of velocity estimation. Whereas the common DTW 

is not capable to handle real world data due to noise, the 

presented COW deals well even with severely stretched 

signals. A drawback of the method is the high 

computational load that prevents an implementation on 

embedded systems.   
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