
ANNUAL JOURNAL OF ELECTRONICS, 2014, ISSN 1314-0078

139

D. Shehova is with the Technical College by Plovdiv
University “Paisiy Hilendarski”, 4700 Smolyan, Bulgaria, e-
mail: dani_shehova@abv.bg.

P. Yakimov is with the Department of Electronics, Faculty of
Electronic Engineering and Technologies, Technical University
of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000, Bulgaria, e-mail:
pij@tu-sofia.bg.

Teaching PLL Fundamentals Using
 MATLAB/Simulink

Daniela Antonova Shehova and Peter Ivanov Yakimov

Abstract – PLL is employed in a wide array of electronic

and communications equipment and understanding its
principles is of a great importance. Simulation is an obvious
solution for teaching PLL fundamentals. MATLAB/Simulink
is a very powerful block simulation environment, most
capable for PLL. The paper discusses an approach for
teaching enabling the students to obtain sustainable
knowledge about PLL.

Keywords – PLL, Simulink, MATLAB, simulation, teaching

I. INTRODUCTION

 Phase-locked loop (PLL) is a feedback loop which locks
two waveforms with same frequency but shifted in phase
[1]. The fundamental use of this loop is in comparing
frequencies of two waveforms and then adjusting the
frequency of the waveform in the loop to equal the input
waveform frequency. Used to synchronize the phase of two
signals, the PLL is employed in a wide array of electronic
and communications equipment, including microprocessors
devices such as radios, televisions, and mobile phones. The
basic blocks of the PLL are a phase detector, a low-pass
filter, a variable frequency oscillator, and a divider (Fig. 1).

Fig. 1. PLL general block diagram.

 Obtaining sustainable knowledge about PLL requires
understanding its fundamentals - loop components, loop
response, loop stability, transient response, modulation
response. Simulation is an obvious solution. Most often
MATLAB will suffice for modeling and simulation. The
use of Spice with behavioral level modeling capabilities
may also be useful, e.g., XSpice via SIMetrix/SIMPLIS or
PSpice. Simulink® is a block diagram environment for
multidomain simulation and Model-Based Design [4]. It

supports simulation, automatic code generation, and
continuous test and verification. Simulink provides a
graphical editor, customizable block libraries, and solvers
for modeling and simulating dynamic systems. It is
integrated with MATLAB®, enabling incorporation
MATLAB algorithms into models and exportation
simulation results to MATLAB for further analysis.
MATLAB Simulink is a very powerful block simulation
environment, most capable for PLL. Simulink behavioral
simulation is much faster than circuit-level simulation, and
as a result, there can be completed many simulations in one
day, experimenting with different implementation ideas for
the functional blocks. The behavioral simulations are
instrumental in determining the block-level specifications
that will satisfy a given set of top-level PLL specifications.

II. BASIC BLOCKS MODEL PARAMETERS SETTING

A. Pulse Generator

 The Pulse Generator block generates the reference
signal. It produces a periodic pulse train. The variable
synFr denotes the frequency of the pulse train. The period
of the pulse train is 1/synFr. To change the value of the
period, the value of the variable synFr has to be changed so
that the new value of synFr is used in all the blocks whose
parameters reference the variable synFr (Fig. 2).

Fig. 2. Pulse generator model parameter setting.

B. Divide Frequency subsytems

 There are two divide frequency subsystems - divide
frequency by synM and divide frequency by synN. The

ANNUAL JOURNAL OF ELECTRONICS, 2014

 140

divide frequency by synM subsystem divides the frequency
of the reference signal by the variable synM. The output of
the block is a pulse train called the frequency-divided
reference signal. This value determines the step of the
output frequency setting. The divide frequency by synN
subsystem divides the frequency of the synthesized signal
by the variable synN. The output of this subsystem is called
the frequency-divided synthesized signal. At steady state its
frequency has the same value as the output one of the synM
subsystem. The value of the divisor in these subsystems
can be changed by changing the value of synM or synN
(Fig. 3).

Fig. 3a. SynM value setting.

Fig. 3b. SynN value setting.

C. Phase Detector

 The Logical Operator block acts as a phase detector. It
uses the XOR operation to compare the frequencies of the
frequency-divided reference signal and the frequency-
divided synthesized signal. At steady state, the signal is a
pulse train with frequency two times higher than the both
inputs. The reason for this is that both inputs to the block
have equal frequencies, but they are out of phase by 1/4 of
their period. As a result, the signal after the XOR operation
is a periodic pulse train with double frequency (Fig. 4).

Fig. 4. Phase detector parameters setting.

D. Analog Filter Design

 The Analog Filter Design block filters high frequencies
out of the signal coming from the phase detector. The block
uses a lowpass Butterworth filter. A higher-order filter or
another filter type can be used to improve the stability of
the synthesized signal (Fig. 5). In the steady state of the
model, the amplitude of the block’s output signal is

approximately constant, with a value of 0.5. This is the
average value of the output from the phase detector.
 A Gain block multiplies the output signal from the
Analog Filter Design block by a constant to produce the
control signal.

Fig. 5. Analog filter design menu.

E. Voltage-Controlled Oscillator

 The Continuous-Time VCO block generates the
synthesized signal (along with the Convert to Square Wave
subsystem) and adjusts the frequency of the synthesized
signal according to the Voltage-Controlled Oscillator input
signal. When the control signal is close to its steady-state,
the Continuous-Time VCO block generates a signal whose
frequency is close to synFr*synN/synM. If the output
frequency drops, the control signal rises, boosting the
frequency of the output signal. If the output frequency
rises, the control signal falls, lowering the output
frequency. The Quiescent frequency parameter is just the
oscillation frequency, synFq. The difference between the
block’s output signal frequency and the quiescent
frequency is proportional to the input signal, interpreted as
voltage. The quiescent frequency is set to the variable
synFq. This value can be changed in the quiescent
frequency field, or by changing the value of synFq in the
base MATLAB workspace (Fig. 6).

Fig. 6. VCO parameters setting.

III. STUDY OF FRACTIONAL-N FREQUENCY

SYNTHESIS

 As an example a study of a fractional-N frequency
synthesis (Fig. 7) is chosen to explain the students the
operation of PLL and to give them skills for work with
MATLAB/Simulink [2].

ANNUAL JOURNAL OF ELECTRONICS, 2014

 141

Fig. 7. Fractional-N frequency synthesis model.

 The model multiplies the frequency synFr of a reference
signal by a constant synN+synM, to produce a synthesized
signal of frequency synFr*(synN+synM). A feedback loop
maintains the frequency of the synthesized signal at this
level. SynN is an integer and synM is a fraction between 0
and 1. Two subsystems in this example are not present in
the Phase-Locked Frequency Synthesis model:
Accumulator and Divide Frequency.

A. Accumulator

 The Accumulator subsystem repeatedly adds the
constant synM to a cumulative sum. While the sum is less
than 1, the output labeled "Carry" is 0. At a time step when
the sum becomes greater than or equal to 1, the carry
output is 1 and the cumulative sum is reset to its fractional
part. The fraction of the time when the carry output is 1 is
equal to synM, while the fraction of the time when it is 0 is
equal to 1-synM (Fig. 8).

Fig. 8. Accumulator subsystem.

B. Divide Frequency

 The Divide Frequency subsystem divides the frequency
of the synthesized signal by synN when the output of the
Accumulator subsystem is 0, and divides it by synN+1

when the output is 1 (Fig. 9). As a result, the average
amount that frequency is divided by is:
(1-synM)*synN + synM*(synN+1) = synN + synM (1)

Fig. 9. Divide frequency parameters setting.

 The students’ task is to investigate the fractional-N
frequency synthesis using Simulink according to the
following plan:
 1. Setting the basic parameters:

Parameter Value
synM 0,1 ÷ 0,9
synN 10
Fr 10 MHz
Fq 101 ÷ 109 MHz

 2. Performing simulations for different filter type and
presenting the results for Fq [MHz] in table 1:

TABLE 1. SIMULATIONS RESULTS
synM Butterworth Chebyshev I Chebyshev II Elliptic

0,1 100,8 100,7 94,27 100,7
0,2 101,8 101,8 94,26 101,8
0,3 103,1 103 94,27 103,1
0,4 104,2 103,9 94,26 103,9
0,5 105 104,9 94,26 104,9
0,6 106 106 94,23 106
0,7 107 107,1 94,26 107,1
0,8 108 108 94,26 108
0,9 109 109,4 94,25 109,4

ANNUAL JOURNAL OF ELECTRONICS, 2014

 142

 3. The presented in the table above results are visualized
graphically using MATLAB. For this purpose the students
create the following source code:
x=0.1:0.1:0.9;
y1=[100.8 101.8 103.1 104.2 105 106 107 108 109];
y2=[100.7 101.8 103.1 103.9 104.9 106 107.1 108 109.4];
y3=[94.27 94.26 94.27 94.26 94.26 94.23 94.26 94.26 94.25];
y4=[100.7 101.8 103 103.9 104.9 106 107.1 108 109.4];
plot(x, y1, '- g o', x, y2, '- b x', x, y3, '- r o', x, y4, '- m x',....
'MarkerFaceColor', 'k', 'MarkerSize', 5, 'LineWidth', 3)
grid on, xlabel('m'), ylabel('Fq, MHz')
title('Frequensy Synthesis ')
legend('y1(Butterworth)','y2(ChebychevI)','y3(ChebychevII)',
'y4(Elliptic)')

where the arrays contain the following data:
y1 - the output frequency values using Butterworth
filtration;
y2 - the output frequency values using Chebyshev I
filtration;
y3 - the output frequency values using Chebyshev II
filtration;
y4 - the output frequency values using Elliptic filtration.

 The graphical presentation of the results is depicted on
Fig. 10.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
94

96

98

100

102

104

106

108

110

m

Fq
, M

H
z

Frequensy Synthesis

y1(Butterworth)
y2(Chebychev I)
y3(Chebychev II)
y4(Elliptic)

Fig. 10. Output frequency plots.

Fig. 11. Pulse signals oscillograms.

 The explanation of the simulation results gives the
students knowledge about the filter usage. Chebyshev I and
Elliptic filtration methods have sharper slopes so the results
are the most close to the real values. The inversed
Chebyshev approximation is not suitable for the proposed
frequency synthesis.

Fig. 12. Control signal oscillogram.

 The signals in the important nodes are visualized on Fig.
11 and Fig. 12 using the virtual instrument Scope.

IV. CONCLUSION

 Using the proposed approach for PLL fundamentals
teaching help the students to understand better the PLL
operation and the different blocks impact over the entire
performance. They improve their skills for work with
MATLAB/Simulink and learn how to analyze the system
behavior using simulation investigations. Also they obtain
abilities to present the results.
 Nowadays Simulink is widely used in the engineering
education in many fields so it can be successfully applied
in the Electronic Circuits Design teaching.

REFERENCES

[1] http://www.mathworks.com/help/comm/examples/pll-based-
frequency-synthesis.html
[2] http://www.mathworks.com/help/comm/examples/fractional-
n-frequency-synthesis.html
[3] mathworks.com/newsletters.
[4] http://www.eas.uccs.edu/wickert/ece5675/
[5] Egan, William F. "Fractional-N and Relatives", Frequency
Synthesis by Phase Lock, (2nd ed., pp. 371-390). N.Y., John
Wiley & Sons, 2000.
[6] Jyoti P. Patra and Umesh C. Pati. Behavioural Modelling and
Simulation of PLL Based Integer N Frequency Synthesizer using
Simulink, International Journal of Electronics and Communication
Engineering. ISSN 0974-2166 Volume 5, Number 3 (2012), pp.
351-362

