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Abstract – PLL is employed in a wide array of electronic 

and communications equipment and understanding its 
principles is of a great importance. Simulation is an obvious 
solution for teaching PLL fundamentals.  MATLAB/Simulink 
is a very powerful block simulation environment, most 
capable for PLL. The paper discusses an approach for 
teaching enabling the students to obtain sustainable 
knowledge about PLL.  
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I. INTRODUCTION 
 
 Phase-locked loop (PLL) is a feedback loop which locks 
two waveforms with same frequency but shifted in phase 
[1]. The fundamental use of this loop is in comparing 
frequencies of two waveforms and then adjusting the 
frequency of the waveform in the loop to equal the input 
waveform frequency. Used to synchronize the phase of two 
signals, the PLL is employed in a wide array of electronic 
and communications equipment, including microprocessors 
devices such as radios, televisions, and mobile phones. The 
basic blocks of the PLL are a phase detector, a low-pass 
filter, a variable frequency oscillator, and a divider (Fig. 1). 

Fig. 1. PLL general block diagram. 

 Obtaining sustainable knowledge about PLL requires 
understanding its fundamentals - loop components, loop 
response, loop stability, transient response, modulation 
response. Simulation is an obvious solution. Most often 
MATLAB will suffice for modeling and simulation. The 
use of Spice with behavioral level modeling capabilities 
may also be useful, e.g., XSpice via SIMetrix/SIMPLIS or 
PSpice. Simulink® is a block diagram environment for 
multidomain simulation and Model-Based Design [4]. It 

supports simulation, automatic code generation, and 
continuous test and verification. Simulink provides a 
graphical editor, customizable block libraries, and solvers 
for modeling and simulating dynamic systems. It is 
integrated with MATLAB®, enabling incorporation 
MATLAB algorithms into models and exportation 
simulation results to MATLAB for further analysis. 
MATLAB Simulink is a very powerful block simulation 
environment, most capable for PLL. Simulink behavioral 
simulation is much faster than circuit-level simulation, and 
as a result, there can be completed many simulations in one 
day, experimenting with different implementation ideas for 
the functional blocks. The behavioral simulations are 
instrumental in determining the block-level specifications 
that will satisfy a given set of top-level PLL specifications. 
 
II. BASIC BLOCKS MODEL PARAMETERS SETTING 

 
A. Pulse Generator  
 
 The Pulse Generator block generates the reference 
signal. It produces a periodic pulse train. The variable 
synFr denotes the frequency of the pulse train. The period 
of the pulse train is 1/synFr. To change the value of the 
period, the value of the variable synFr has to be changed so 
that the new value of synFr is used in all the blocks whose 
parameters reference the variable synFr (Fig. 2).  

 
Fig. 2. Pulse generator model parameter setting. 

 
B. Divide Frequency subsytems 
 
 There are two divide frequency subsystems - divide 
frequency by synM and divide frequency by synN. The 
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divide frequency by synM subsystem divides the frequency 
of the reference signal by the variable synM. The output of 
the block is a pulse train called the frequency-divided 
reference signal. This value determines the step of the 
output frequency setting. The divide frequency by synN 
subsystem divides the frequency of the synthesized signal 
by the variable synN. The output of this subsystem is called 
the frequency-divided synthesized signal. At steady state its 
frequency has the same value as the output one of the synM 
subsystem. The value of the divisor in these subsystems 
can be changed by changing the value of synM or synN 
(Fig. 3). 

 
Fig. 3a. SynM value setting. 

 
Fig. 3b. SynN value setting. 

 
C. Phase Detector 
 
 The Logical Operator block acts as a phase detector. It 
uses the XOR operation to compare the frequencies of the 
frequency-divided reference signal and the frequency-
divided synthesized signal. At steady state, the signal is a 
pulse train with frequency two times higher than the both 
inputs. The reason for this is that both inputs to the block 
have equal frequencies, but they are out of phase by 1/4 of 
their period. As a result, the signal after the XOR operation 
is a periodic pulse train with double frequency (Fig. 4). 

 
Fig. 4. Phase detector parameters setting. 

 
D. Analog Filter Design 
 
 The Analog Filter Design block filters high frequencies 
out of the signal coming from the phase detector. The block 
uses a lowpass Butterworth filter. A higher-order filter or 
another filter type can be used to improve the stability of 
the synthesized signal (Fig. 5). In the steady state of the 
model, the amplitude of the block’s output signal is 

approximately constant, with a value of 0.5. This is the 
average value of the output from the phase detector. 
 A Gain block multiplies the output signal from the 
Analog Filter Design block by a constant to produce the 
control signal. 

 
Fig. 5. Analog filter design menu. 

 
E. Voltage-Controlled Oscillator 
  
 The Continuous-Time VCO block generates the 
synthesized signal (along with the Convert to Square Wave 
subsystem) and adjusts the frequency of the synthesized 
signal according to the Voltage-Controlled Oscillator input 
signal. When the control signal is close to its steady-state, 
the Continuous-Time VCO block generates a signal whose 
frequency is close to synFr*synN/synM. If the output 
frequency drops, the control signal rises, boosting the 
frequency of the output signal. If the output frequency 
rises, the control signal falls, lowering the output 
frequency. The Quiescent frequency parameter is just the 
oscillation frequency, synFq. The difference between the 
block’s output signal frequency and the quiescent 
frequency is proportional to the input signal, interpreted as 
voltage. The quiescent frequency is set to the variable 
synFq. This value can be changed in the quiescent 
frequency field, or by changing the value of synFq in the 
base MATLAB workspace (Fig. 6). 

  
Fig. 6. VCO parameters setting. 

  
III. STUDY OF FRACTIONAL-N FREQUENCY 

SYNTHESIS 
 

 As an example a study of a fractional-N frequency 
synthesis (Fig. 7) is chosen to explain the students the 
operation of PLL and to give them skills for work with 
MATLAB/Simulink [2]. 
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Fig. 7. Fractional-N frequency synthesis model. 

 
 The model multiplies the frequency synFr of a reference 
signal by a constant synN+synM, to produce a synthesized 
signal of frequency synFr*(synN+synM). A feedback loop 
maintains the frequency of the synthesized signal at this 
level. SynN is an integer and synM is a fraction between 0 
and 1. Two subsystems in this example are not present in 
the Phase-Locked Frequency Synthesis model: 
Accumulator and Divide Frequency. 
 
A. Accumulator 
 
 The Accumulator subsystem repeatedly adds the 
constant synM to a cumulative sum. While the sum is less 
than 1, the output labeled "Carry" is 0. At a time step when 
the sum becomes greater than or equal to 1, the carry 
output is 1 and the cumulative sum is reset to its fractional 
part. The fraction of the time when the carry output is 1 is 
equal to synM, while the fraction of the time when it is 0 is 
equal to 1-synM (Fig. 8). 

  
Fig. 8. Accumulator subsystem. 

 
B. Divide Frequency 
  
 The Divide Frequency subsystem divides the frequency 
of the synthesized signal by synN when the output of the 
Accumulator subsystem is 0, and divides it by synN+1 

when the output is 1 (Fig. 9). As a result, the average 
amount that frequency is divided by is: 
(1-synM)*synN + synM*(synN+1) = synN + synM           (1) 

 
Fig. 9. Divide frequency parameters setting. 

 The students’ task is to investigate the fractional-N 
frequency synthesis using Simulink according to the 
following plan: 
 1. Setting the basic parameters: 

Parameter Value 
synM 0,1 ÷ 0,9 
synN 10 
Fr 10 MHz 
Fq 101 ÷ 109 MHz 

 2. Performing simulations for different filter type and 
presenting the results for Fq [MHz] in table 1: 

TABLE 1. SIMULATIONS RESULTS  
synM Butterworth Chebyshev I Chebyshev II Elliptic 

0,1 100,8 100,7 94,27 100,7 
0,2 101,8 101,8 94,26 101,8 
0,3 103,1 103 94,27 103,1 
0,4 104,2 103,9 94,26 103,9 
0,5 105 104,9 94,26 104,9 
0,6 106 106 94,23 106 
0,7 107 107,1 94,26 107,1 
0,8 108 108 94,26 108 
0,9 109 109,4 94,25 109,4 
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 3. The presented in the table above results are visualized 
graphically using MATLAB. For this purpose the students 
create the following source code: 
x=0.1:0.1:0.9;  
y1=[100.8 101.8 103.1 104.2 105 106 107 108 109]; 
y2=[100.7 101.8 103.1 103.9 104.9 106 107.1 108 109.4]; 
y3=[94.27 94.26 94.27 94.26 94.26 94.23 94.26 94.26 94.25]; 
y4=[100.7 101.8 103 103.9 104.9 106 107.1 108 109.4]; 
plot(x, y1, '- g o', x, y2, '- b x', x, y3, '- r o', x, y4, '- m x',.... 
'MarkerFaceColor', 'k', 'MarkerSize', 5, 'LineWidth', 3) 
grid on, xlabel('m'), ylabel('Fq, MHz') 
title('Frequensy Synthesis ') 
legend('y1(Butterworth)','y2(ChebychevI)','y3(ChebychevII)', 
'y4(Elliptic)') 

where the arrays contain the following data: 
y1 - the output frequency values using Butterworth 
filtration; 
y2 - the output frequency values using Chebyshev I 
filtration; 
y3 - the output frequency values using Chebyshev II 
filtration; 
y4 - the output frequency values using Elliptic filtration. 
 
 The graphical presentation of the results is depicted on 
Fig. 10. 
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Fig. 10. Output frequency plots. 

  

 
Fig. 11. Pulse signals oscillograms. 

 The explanation of the simulation results gives the 
students knowledge about the filter usage. Chebyshev I and 
Elliptic filtration methods have sharper slopes so the results 
are the most close to the real values. The inversed 
Chebyshev approximation is not suitable for the proposed 
frequency synthesis. 

 
Fig. 12. Control signal oscillogram. 

 The signals in the important nodes are visualized on Fig. 
11 and Fig. 12 using the virtual instrument Scope. 
 

IV. CONCLUSION 
 
 Using the proposed approach for PLL fundamentals 
teaching help the students to understand better the PLL 
operation and the different blocks impact over the entire 
performance. They improve their skills for work with 
MATLAB/Simulink and learn how to analyze the system 
behavior using simulation investigations. Also they obtain 
abilities to present the results.  
 Nowadays Simulink is widely used in the engineering 
education in many fields so it can be successfully applied 
in the Electronic Circuits Design teaching. 
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