
ANNUAL JOURNAL OF ELECTRONICS, 2014, ISSN 1314-0078

20

Search-based Approach for Software Cost
Estimation

Violeta Todorova Bozhikova and Mariana Tsvetanova Stoeva

Abstract – Search-Based Software Engineering (SBSE) is a

new Software Engineering (SE) branch that uses Search-
based approach (SBA) to а big number activities of the
software development process. The possibility of formulating
a software engineering activity as an optimization problem is
the reason for using Search-based approach to resolve it,
which consists in applying meta-heuristic algorithms in order
to find a rational (near optimal or sub-optimal) instead of
optimal solution of the problem. The paper presents the
author's work in the field of SBSE: arguments why software
cost estimation is “Search|Optimization problem” are given
and a search-based procedure for software cost estimation is
presented.

Keywords – Search-Based Software Engineering, Software
Cost Estimation, Tabu search method, Search-based
approach

I. INTRODUCTION

 The term Search-Based Software Engineering ("SBSE")
was first introduced by Harman and Jones in 2001,
although the optimization has long been used to solve
problems in Software Engineering. The reason is that
almost all activities in software production can be
formulated as optimization problems. This is an argument
to use Search-based approach to solve them which consists
in applying meta-heuristics in order to find a rational (near
optimal or sub-optimal) instead of optimal solution of the
problem [1]…[8].
 Meta-heuristic search algorithms such as hill climbing,
Tabu search, simulated annealing and probabilistic search
algorithms (for example, GA) are local search-based
techniques, widely used to solve various optimization
problems in the presence of many local extremes, with
many parameters and conflicting constraints. They
effectively find acceptable approximations of many
considered as "NP-complete" and "NP-complex" problems,
where is impossible or unreasonable to use accurate
analytical algorithms that produce the optimal solution, but
is possible to determine which of two candidate solutions is
better. These algorithms are easily designed and
implemented. The only downside is that the final solution
may be far from optimal. But, in many practical cases, it is
preferable to the alternative - an endless and hopeless
search for the optimal solution.

 “Hill climbing” is considered to be the most used meta-
heuristic search technique. There are many variations of
this approach. The search process begins typically with a
“current solution” (current state), usually an accidental
solution. Many "neighboring" solutions are then
appreciated and a "neighboring solution" that improves the
goal function is selected which becomes the “current
solution” and then the process is repeated. It is believed
that this is the best technique for solving optimization
problems and it is reasonable to start searching solution
with it. Some authors even consider [4] that if this
technique gives a worse result than another meta-heuristic,
either the problem is not well understood, either the
problem formalization is inadequate.
 The purpose of this paper is both to show that Software
Cost Estimation is "Search|Optimization" problem and to
comment the authors work in the field of SBSE: a meta-
heuristic procedure for software cost estimation is
presented in this context.
 Arguments why software cost estimation is
“Search|Optimization problem” are given in the next
section.

II. SOFTWARE COST ESTIMATION AND SBSE

 SBSE seeks to reformulate Software Engineering
problems as “search problems” [1]... [8]. Possibility of
formulating a problem as a "Search|Optimization problem”
is a reason for applying meta-heuristic approach to solve it.
Meta-heuristics are solution methods that organize an
interaction between local improvement procedures and
higher level heuristics to escape from local optima and to
perform a robust search of solution space.
 Why Software Cost Estimation could be seen as a
Search|Optimization problem? This is because Software
Cost Estimation is an activity that has a large area of
solutions and does not have an effective accurate solution.
This is because an appropriate objective function for
evaluating the solutions could be designed and an easy (not
expensive) generation of candidate solutions could be
invented.
 Software Cost Estimation is associated with the
prediction of the resources needed for the software
production (usually human effort, project duration, staff
needed and cost in dollars and so on), so helping the project
managers to evaluate the project progress and to ensure that
the spending will not exceed the budget provided. It
becomes more and more difficult task due of the enhanced
development of increasingly large and complex software
projects and the specific nature of the software as product:
to estimate something that cannot be seen and touched is a
complex task that requires great knowledge and experience.

V. Bozhikova is with the Department of Computer Science and
Technologies, Faculty of Computer Technique and Automation,
Technical University - Varna, 1 Studentska str., 9010 Varna,
Bulgaria, e-mail: e-mail: vbojikova2000@yahoo.com

M. Stoeva is with the Department of Computer Science and
Technologies, Faculty of Computer Technique and Automation,
Technical University - Varna, 1 Studentska str., 9010 Varna,
Bulgaria, e-mail: mariana_stoeva@abv.bg

ANNUAL JOURNAL OF ELECTRONICS, 2014

 21

The research efforts in the field of Software Cost
Estimation are directed at developing reliable and effective
methods and tools. After more than 20 years of research in
this field a big number of software cost estimation methods
are available but no one method is considered to be the best
for all type projects. The advantages and disadvantages of
the existing methods are often complementary each other
which is a reason to use a combination of methods, most of
which algorithmic in order to find the best estimate of the
costs. The algorithmic methods such as CoCoMo, Function
Point Analysis, Putnam model, etc. are considered to be
more reliable (i.e. more objective and accurate) than the
non-algorithmic methods.
 The next section discusses our approach for Software
Cost Estimation and focuses on the elements of a Tabu
search procedure for software effort estimation.

III. APPLYING TABU SEARCH HEURISTIC FOR
SOFTWARE COST ESTIMATION

A. Our Hybrid approach for Software Cost Estimation
 The Tabu search procedure, presented in this paper is
based on our approach for Software Cost estimation,
proposed for first time in [7] which is a combination
between Basic COCOMO, Intermediate COCOMO,
COCOMO II and Function Point Analysis. In fact, the cost
function PMadjasted, commented in [7] and [8] is a
function of the effort adjustment factor EAF.

()[])1(monthspersonEAFPMPM nomadjasted −=

where
() [])2(monthspersonKSLOCEFPM ee

nom −=
and

where

⎩
⎨
⎧

=
.15

;18
usedisCOCOMOteIntermediaCOCOMOif

usedisIICOCOMOif
CDN

 EAF is calculated as a product of the effort ratings of the
fifteen Intermediate CoCoMo Cost Drivers or the
seventeen COCOMO II Cost Drivers, plus one extra. Total
of eighteen Cost Drivers in the latter case are grouped into
4 major categories “Personnel attributes”, “Project
attributes”, “Platform attributes” and “Product attributes”.
An additional user defined cost driver, named USER was
added to the classic COCOMO II Cost Drivers:
Personnel factors

1. Analyst Capability,
2. Applications Experience,
3. Programmer Capability,
4. Language and Tool Experience,
5. Personnel Continuity
6. Platform Experience

Product factors
7. Required Software Reliability
8. Database Size
9. Software Product Complexity
10. Required Reusability
11. Documentation Match to Life-Cicle needs

Platform factors:
12. Execution Time Constraint,
13. Main Storage Constraint,
14. Platform Volatility,

Project factors
15. Use of Software Tools,
16. Multi-site Development,
17. Required Development Schedule,
18. USER.

The fifteen Intermediate CoCoMo Cost Drivers are
structured into the following four categories:
Product attributes

1. Required software reliability
2. Size of application database
3. Complexity of the product

Hardware attributes
4. Run-time performance constraints
5. Memory constraints
6. Volatility of the virtual machine environment
7. Required turnabout time

Personnel attributes
8. Analyst capability
9. Software engineering capability
10. Applications experience
11. Virtual machine experience
12. Programming language experience

Project attributes
13. Use of software tools
14. Application of software engineering methods
15. Required development schedule

 The possible values for these attributes depend on the
impact they could have on a project. We could see for
example in [7] that the rating of “Required Software
Reliability” varies from 0.75 to 1.4 where the value of
“Programmer Capability” changes from 1.14 to 0.88
depending on the project.
 PMnom is a product of the size of the software product in
KSLOC (in thousands of source lines of code) and EF - a
coefficient based on Intermediate COCOMO model:

Software project EF ee
Organic 3.2 1.05
Semi-detached 3.0 1.12
Embedded 2.8 1.20

 PMnom could be considered as an early design cost
estimate of the software project. According our approach,
the estimation of the product size begins with the
calculation of ФТ - Unadjusted Function Points. In order to
calculate ФТ, the estimator has to classify the product
functions into 5 groups: Inputs, Outputs, Files, Interfaces,
and Queries. Within each group, the functions are classified
(according to their complexity) in simple, medium and
complex. So, the weight of each function depends on both:
on its type and its complexity. Finally, Unadjusted
Function Points (ФТ) is the sum of the weights of all
functions, which is expressed by the next formula:

)3(
1
∏=
CDN

iEMEAF

)4(
5

1

3

1
∑ ∑
= =

=
i j

WijNijФТ

ANNUAL JOURNAL OF ELECTRONICS, 2014

 22

where Nij and Wij are respectively the number and weight
of functions type i with complexity j.

 Next, the unadjusted function points are converted into
equivalent SLOC depending of a LangFactor of the
language used. For example, the LangFactor [3] for
Assembly language is 320SLOC/UFP, for C++ -
29SLOC/UFP, for Fortran 77 – 105SLOC/UFP, for Lisp –
64SLOC/UFP, for Pascal – 91 SLOC/UFP and so on.
 Next, the value of DI (“degree of influence” fourteen
application characteristics) is accounted. DI calculation is
based on the rating (rating scale of 0 to 5 for each
characteristic) of fourteen application characteristics (such
as performance, reusability, etc. - the figure below). The
ratings of the 14 characteristics are added together (6), then
the result DI is multiplied to 0.01 (equation 7) and added to
a base level of 0.65 to produce a general characteristics
adjustment factor that ranges from 0.65 to 1.35.

)5(
14

1
∑= iratingDI

()())6(01.065.0 LangFactorDIФТSLOC ××+×=

B. Applying Tabu Search Heuristic for Software Cost
Estimation
 Tabu search is often used for solving optimization
problems. Glover and Laguna give in 1997 a
comprehensive description of this technique. As in classical
local search process, the general step of Tabu search
process consists in constructing new solution from the
neighborhood (the search space) of the current solution
“cs” and in checking whether the search process should
stop there or perform another step. Specific to Tabu search
method is that the local search procedure tries to avoid
falling into local optima by creating a special list of
forbidden solutions (forbidden moves), called “Tabu” list
for each current solution “cs”. Below, the general Tabu
search algorithm is summarized:
1. Identify the starting solution (usually random generated),
let’s accept it as current solution.
2. Loop
Define the neighborhood set of solutions for the current
solution (define the search space);
Identify the Tabu set of solutions for cs (define a forbidden
moves);
Identify the aspiring set of solutions for the current solution
(define aspiring moves);
Choose the best neighbor solution for the current (find the
best move) and take it to be the current solution;
Exit when the goal function is satisfied or stopping
condition is reached.
End Loop
3. The final (sub-optimal) solution is found

C.Tabu search procedure for software effort estimation

 The key issues that have to be addressed in order to use
Tabu search for Software Cost Estimation are:
• How to evaluate the neighbourhood (e.g. what is the

objective function)?
 Our procedure, presented below, tries to minimize (7)
the value of the effort function PMadjusted (1)
simultaneously trying to satisfy a restrictive condition (8)
in terms of a predetermined threshold PM max.

)7(min=adjastedPM

)8(maxPMPM adjasted ≤

 In order to satisfy the goal function (9), the space of all
possible combinations of cost drivers is searched in a
sequence of moves from one possible combination to the
best available alternative which minimizes the effort
adjustment factor EAF, taking in consideration the
forbidden combinations saved in a “Tabu” list:

)9(min=EAF
 The goal function is a measure of the quality of the
current combination of cost drivers and shows how well the
cost driver’s combination is a solution to the problem.

• How to define the Tabu list, the aspiration criteria and

the termination criteria?
 In general, the criteria for classifying aspiring and
forbidden moves are specific to the application. To
minimize the chance of cycling in the same solution, any
combination of cost drivers which has been already
selected is put into a “Tabu” list so that it becomes ‘taboo’
(forbidden).
 The six steps of our Tabu search procedure are described
below:
1. Identify an initial solution that satisfies the restrictive
condition.
Loop
 Generate a set of Cost Driver values.
 If the set is not in the Tabu List
 Calculate EAF, then PMadjusted;
 Put the set in the Tabu List.
 Endif
 Exit when the restrictive condition is satisfied (an initial
solution is found) or the specific number of iteration is
reached.
EndLoop
2. Optimize the solution found (if is found in step 1):
Identify a sub-optimal solution that minimizes the goal
function, generating new set of Cost Driver values.
Loop
 Generate a new set of Cost Driver values.
 If the set is not in the Tabu List
 Put the set in the Tabu List.
 Calculate EAFcurrent.
 If (EAFcurrent < EAF)

 EAF= EAFcurrent
 Calculate PMadjusted;

 EndIf
 EndIf
Exit when the specific number of iteration is reached.
EndLoop
The final (sub-optimal) solution is found.

ANNUAL JOURNAL OF ELECTRONICS, 2014

 23

IV. CONCLUSION

 The paper presents the author's work in the field of
SBSE: arguments why software cost estimation is a
“Search|Optimization problem” are given, our hybrid
approach for software cost estimation is commented and a
Tabu-search procedure for software cost estimation is
presented.
 Although to date we have not yet conducted extensive
experiments, the results of the study of a small number of
student projects are encouraging: the Tabu search
algorithm finds for a reasonable time a solution that is close
to optimal.

REFERENCES

[1] Goran Mauša, Search Based Software Engineering and
Software Defect Prediction,
http://www.fer.unizg.hr/_download/repository/Kvalifikacijski_-
_Goran_Mausa.pdf
[2] Mark Harman and al., Search Based Software Engineering:
Techniques, Taxonomy, Tutorial,
http://www0.cs.ucl.ac.uk/staff/mharman/laser.pdf
[3] Mark Harman and Bryan F. Jones, Search based software
engineering. Information and Software Technology,
43(14):833{839, December 2001.
[4] John Clarke, Jose Javier Dolado, Reformulating Software
Engineering as a Search Problem,
http://www.discbrunel.org.uk/seminal
[5] Filomena Ferrucci, Carmine Gravino, Rocco Oliveto, and
Federica Sarro, Using Tabu Search to Estimate Software
Development Effort,
http://www0.cs.ucl.ac.uk/staff/fsarro/resource/papers/C20.pdf
[6] COCOMO II Model Definition Manual,
ftp://ftp.usc.edu/pub/soft_engineering/COCOMOII/cocomo97doc
s/modelman.pdf.
[7] Bozhikova V., M. Stoeva, An Approach for Software Cost
Estimation, Proc. of the International conference on computer
systems and technologies (CompSysTech’2010), International
Conference Proceedings series - V.471, София,
Bulgaria, 2010, pp.119 -124, ACM ISBN 978-1-4503-0243-2.
[8] Bozhikova V., Estimation of the software costs using
heuristic search algorithms, Proceedings of third Int'l Scientific
Congress 50 anniversary TU-Varna, ТУ-Варна, Volume 1,
pp.162-165

