VHDL Synthesis of XZ8 — an 8-bit RISC processor

Eng., M.Sc. Seraphim Dimitrov Tabakov — TU Sofia
George Ivanov Radulov — TU Sofia

Eng., M.Sc. Rossen Ivanov Radonov — TU Sofia
radulov@ecad.vmmei.acad.bg

ECAD Laboratory is a leading educational center in Technical
University of Sofia for digital, analog and mixed-signal ICs. The Laboratory
is specialized in testing new software solutions, developing new design
flows and providing different instruction courses that prepare our students
for the real-life problems in ASIC and FPGA domain.

One of the latest success stories in ECAD Laboratory is the XZ8 - an
8-bit RISC processor developed exclusively for educational goals. It has
very light and understandable hardware structure, but in the same time it is a
RISC processor and uses a pure Harvard architecture. Its reduced, in 18
instructions, instruction set makes the XZ8 very convenient for research and
a starting point in the area of professional micro Controllers, micro
Processors and DSPs. Although the chip was developed for education. it is a
general-purpose processor and can be used in many different applications.

VHDL was an integral part of the design methodology we used to
create the ZX8. Front-end design and behavioral-level simulation were done
with VHDL. Multiple test benches were developed with VHDL. After the
RTL description was synthesized, the back end of the design process was
finished through XILINX implementation using XNF gate-level schematic
regeneration. The chip had difficult design goals; we needed to create a real
solution within the university conditions; we needed to clarify and structure
the design flow for educational purposes; we had to create a real
understandable RISC with a real Harvard architecture.

VHDL was primary chosen because it provides a rich set of semantic
constructs, and it allows fast exploration of alternate architectures. Some of
the semantic features we use include procedures, user defined types,
packages (for data/types/subprogram sharing), constants and so on. VHDL
has powerful looping capabilities, superior time resolution (femto-second
accuracy), fast behavioral simulation run times, and allows design reuse
through the creation of our own libraries. Finally, VHDL is unmatched in
the benefits it brings to test bench development. This is significant because a
lot of effort goes into generation of the test bench to verify design
functionality and to create test vectors.

After the system and performance requirements were determined, the
system was partitioned into several functional blocks using Synopsys

59

Graphical Environment (SGE) Schematics. When drawn properly,
schematics provide a graphical representation of the design hierarchy in a
manner that allows the functional data flow to be visible. A nice feature of
the Synopsys tool kit is that after the block diagram is drawn and
interconnect, it then generates a RTL VHDL file and for all functional
blocks it generates VHDL skeleton files that must be filled with the
particular behavior descriptions.

When writing hardware descriptions using any HDL, careful attention
must be paid to the coding structure and semantic constructs that are used.
Although VHDL provides target device independence through the use of
synthesis, an optimized RTL description must take into account the specific
synthesizer being used.

Design entry using SYNOPSYS dc_shell
Concept. Partition the digital logic into
blocks and draw the hierarchy with
schematic editor.

Software used: SGE - SYNOPSYS
Graphics Environment

Write RTL VHDL code for each
Develop VHDL functional block
test bench using Software used: Vi
SGE and text Modify
editor (vi) sources

[VHDL behavioral simulation and
debugging.

Software used: vhdlan, vhdldbx, vi Emulate design

with Xilinx

— FPGAs.
Synthesis using SYNOPSYS Design Implememsation
Compiler. — done with
Software: dc_shell, Design Analyzer SYNOPSYS
FPGA Compiler I1

and XILINX

Output Verilog® netlist. Foundation 1.5

Modify
|
Gate-level Simulation using SYNOPSYS
Verilog XL with VHDL import or the

Verilog netlist.

L Completed chip goes to the fab. 7

Figure 1.

60

In ECAD Laboratory Synopsys 1999.10 and XILINX foundation 1.5
are used for digital design. The flow for ASIC and FPGA design is presented
at Figure 1.

XZ8 is a simple 8-bit processor and its VHDL representation is
readable and understandable for students that makes their first steps in the
field of digital design. All VHDL files are absolutely free available for
educational goals at ftp:/ecad.vmei.acad.bg/pub/ZX8. Its block diagram,
representing the files relations is shown at Figure 2.

[TOP.viid — testhench ROM. mem

Processor.vhd G8_pack.vhd
I
]
v v v v vy v v v v v
Fetch.vhd Oper_reg.vhd Procounter.vhd Alu.vhd Stack_logic.vhd
4
Shifter.vhd
Figure 2.

The XZ8 is partitioned into five major blocks. The first block FETCH
is responsible for the four phases that control the performance. One
processor cycle consists of four clock pulses, ie. the external clock
generator must have four times greater frequency than the processor. Each of
the rest four blocks: OPER_REG, PROCOUNTER, ALU and
STACK_LOGIC is responsible for a specific type of instruction, i.e. in the
OPER_REG is performed the instructions concerning the register block,
PROCOUNTER - instructions concerning the 10-bit program counter, ALU
— instructions concerning the arithmetic and logic instructions,
STACK_LOGIC - instructions concerning the stack. The OPER_REG
functional block has a sub-block included — a shift register.

The XZ8 has one input/output 8-bit port, which is connected directly
to the register 3 (REG3) of the register block. The XZ8 works with 16-bits
data bus, where the OP Code is stationed in the five most significant bits,
excluding the two MOVE instructions whose OP Codes are two bits and the
MSB is always 1. The address bus is 10-bits and it allows addressing of

61

1024 lines external ROM program. All jump instructions are performed in
one processor cycle. There is a four level 10-bit stack for program counter
storing during interrupts, in STACK_LOGIC block. This allows the program
to handle deep up to 4 interrupts. There are three interrupts. The first and the
major one 1s the external non-maskable mterrupt. The second interrupt is
also hardware and it is received via the port after some conditions are met
(conditions such as port direction configuration, the mask flag of the CCR,
and the triggered interrupt enable bits). This interrupt is maskable. The last
interrupt is software interrupt and can be interpreted as calling a
subprogram.
The whole instruction set of the XZ8 is shown on Table 1.

Table 1.
Instruction Data Word (OP Code, Parameters) Explanation
SBC Ri 00000xxxxxxR;aR;3R2R;1R g Subtract with carry and store in RO
ADC Ri 00001xxxxxxRi4Ri3Ri2R; R0 Add with carry and store in RO
AND Ri 00010xxxxxxRisRi3R;2R;1 R0 Logical AND and store in RO
OR Ri 0001 1xxxxxxRisRisR;2Ri;1Rio Logical OR and store in RO
XOR Ri 00100xxxxxxRisRi3R;2Ri1 R Logical XOR and store in RO
BZ Addr 00101xPCsPCsPC,PCPCSPC, PC; PC, PC, PC, Load PC if zero ﬂ/ag is triggered
BNZ Addr 00110xPCsPC,PC-PCPCPC, PC, PC; PC, PCq Load PC if zero flag is not triggered
BC Addr O011IxPCsPC4PCPCPCSPC, PC; PC; PC, PCo Load PC if carry flag is triggered
BNC Addr 01000xPCsPCsPC-PCsPCsPC, PC, PC, PC, PCq Load PC if carry flag is not triggered
BN Addr 01111xPCsPC4PC;PCPCsPC, PC; PC, PC, PC, Load PC if negative flag is triggered
BNN Addr 01001xPC,PCsPC-PCPCSPC, PCy PC; PC, PC, Load PC if negative flag is not triggered
SHL Ri 01010xxxxxxRi4Ri3R;2Ri1 R0 Shift one left through carry bit
SHR Ri 0101 IxxxxxxRisRisR;2R;1R;0 Shift one right through carry bit
RTS 01 100XXXXXXXXXXX Load PC with last value in the stack’
CALL Addr 01101xPCyPCsPC;PCPCsPC, PC, PC, PC, PC, Load directly PC
STOP 01110XXXXXXXXXXX STOP all process until interrupt
MOV Ri, Const | 11R;4R;3Ri2R; 1Ri0xC7C6CsC4C3C,C,Co Load a Constant in a register
MOV Rj, Rj 11RisR3R2R; RigxxxxRisR3R 2R 1 Ri Copy a register into register

X —Don’t care
R — Register data

PC — Program counter data

C — Constant

62

The register block is organized in 32 8-bit registers. All of them are
accessible for the programmer, although the first seven registers are system
and the rest 25 are general-purpose registers. Register 0 (REGO) is the
accumulator. It is always one of the parameters for the ALU instructions and
the result from them is stored in it. REG] is a pointer address register. It
stores in its 5 least significant bits the address of the register. to which the
pointer points. REG2 is the “peek” value of REG1 (*REGI), i.e. REG2 has
always the same value as the register whose address is stored in REG]
REGS3 is the input/output port. In some circumstances through REG3 can be
received a maskable interrupt. REG4 configures the port direction of REG3.
Every bit of REG4 determines the direction of the respective port bit of
REG3 - portA. REGS is an interrupt enable register for Incoming interrupts
through portA. REG6 is the Conditional Code Register (CCR). The first bit
of REG6 (REG6(0)) is the mask interrupt flag, REG6(1) is the Zero flag (it
1s triggered in case that the value of REG is equal to 0), REG6(2) 1s the
Carry bit. The Carry bit can be triggered by ALU or shift operation.
REG6(3) is the Negative flag. It is triggered in case that the MSB of the
Accumulator (REG1) is 1. The rest 25 registers can be used for programimer
needs. The executed program can assign any desired value to each register.

Figure 3.

Figure 3 shows the Design Analyzer window with the synthesized
processor and the SGE schematic block-diagram. These snapshots
demonstrate the end and the beginning of the design flow.

At the stage of Design Analyzer, when the XZ8 is already
synthesized, the project is saved in XNF gate-level format and is imported in
XILINX Foundation 1.5. From the XNF is generated a schematic and the

63

project is programmed in XILINX FPGA within the XILINX Foundation 1.5
environment.

There are 18 instructions; every instruction is performed for one
processor cycle, ie. for 4 external clocks; this means that there are
maximum 72 (18x4=72) internal states.

This processor will help our students to understand the basics of
digital design, processor architectures and VHDL source writing=It is just a
core. Additional units such as ADC, SPI, RS232, etc., can be added as
VHDL sources. Upgrades are always welcomed and will be appreciated on
our behalf. The key for its success, we believe, is in its non-commercial
open source: ftp://ecad. vinei.acad.bg/pub/ZX8.

Literature:
1. Charles. H. Roth, Jr., Digital System Design using VHDL, 1998.
2. Douglas L. Perry, VHDL - third edition, 1998.
3. SOLD 1999.10, Synopsys Documentation.
4. XILINX Foundation Series On-line Help System.

64

	59
	60
	61
	62
	63
	64

