A Simple Hardware Model of a Synaptic Function of a
Neuron for CMOS VLSI implementation.

Eng. Momchil Mihaylov Milev, Technical University - Sofia

Assoc. Prof. Ph.D. Marin Hristov Hristov, Technical University — Sofia
milev_momtchili@ti.com mhristoviwecad4sun.vmei.acad.bg

Synopsis: The report gives a brief overview of the most commonly used artificial
neuron computational model and then leads to the construction of a hardware model
using MOSFET devices as the essential elements for modeling the synaptic
connections of the neuron. It also gives an outline of the construction of the complete
hardware model of an artificial neuron with any number of synaptic connections. The
objective is not to present the complete model in detail which is a subject of another
publication, but to focus on the benefits of the specific hardware implementation of
such a model using a single MOSFET device in any conventional CMOS technology.

Biological roots. An overview of artificial neuron modeling.

The computational artificial neuron model that is a primarily processing unit in
nowadays simulations of artificial neural networks, has definitely some roots leading
back to it’s biological counterpart — the cerebral cortex neuron or the so called “delta
cell” in the brain of many species with highly developed nervous system. We can make a
definite parallel between the various computational functions used in the artificial neural
network models and their biological counterparts. For instance, the synaptic connections
of the neuron’s synapses are modeled by weight-coefficients applied to the “input
signals™ along the dendrite trees — then the “output” of the neuron can be found to be
modeled by a non-linear function (typically of sigmoidal form) that processes the
neuron’s internal activity such as to model properly both the state of saturation and very
low activity and its response produced along the axon of a neuron.

Nevertheless, the computational model is far from “mimicking” the original neuron
and the neural network science and its applications are already far from the idea of
simulating the actual functioning of the human brain. However, this does not in any
sense limit the vast domain of research, applications and opportunities to use an
“artificial neural networks” to find solutions in areas where any other engineering or
mathematical algorithmic approach has failed. That is why most often we will reference
the artificial neuron simply as a Processing Element (PE). Typically, a given PE
simulates an artificial neuron by linearly combining the weighted input signals (from its
synaptic connections) and then applying a non-linear saturation function over the above

48

sum to produce the neuron’s response to its internal activity level. Such a PE input
weights can be adjusted (trained) by a number of various optimization algorithms
iteratively minimizing an output error estimate function, so that the output response
matches with the desired pattern of responses to the input stimul;.

The input-output relation of the “linear Processing Element” (so called “linear
combiner™) is given by:

= Wi Xy {] :

where x; is the k-th vector component (input) and v is the output of the linear
combiner or so called “internal activity” value. Further, typically, such a PE will have a
sigmoidal type of non-linear function applied at his output as mentioned above.

y=sigm(v)=sigm(Zw; x, + 6) (2}

Since this (sigmoidal) function is most “sensitive” around the origin of the x-axis,
additional free parameter ¢ is used to “adjust” the neuron’s activity to be in that vicinity
at least initially. This parameter is adjusted (“trained”) usually along with all the
“weights” - free-parameters w; which are adjusted according to the “error signal™
computed at the output of the PE. As we will see further, just the existence of the
mentioned free parameter #will play a crucial role in the considered hardware mode]

Now, let’s take a look at what are the possible ways of building a hardware model of
the PE described in such simplicity by the above mathematical relationship.

Use of a single MOSFET to model the “synaptic connection of a neuron”’

It is not hard to see that there are numerous ways in which the above relationship can
be implemented in hardware. One can find various implementations in the literature and
technical conference proceedings starting with the use of a numerical computer or at
Jeast it’s ALU, using digital multipliers and adders or going through frequency
multipliers and voltage or current controlled oscillators (VCO’s) reaching really
innovative solutions involving “optical transistors” or polarized laser beams modulated
by liquid-crystal lattices. Here, the author presents the use of MOSFET devices to model
the above relationship, thus modeling the synaptic function of a neuron.

Let’s look into the first-order approximated model of the MOSFET drain current
(assuming linear region of operation (Uy < Uy, - Uy,):

IdS = ﬂ[(Ugs - Ur/:) Ud.v - I/EUd;Z] {3}

As we can see, we can use the gate voltage to control the drain current which
depends additionally on the drain-source voltage. Thus, we can use the product of the
gate and drain-source voltages to produce one of the components of the above relation

49

t1;, then summing the currents of those “partial products” to produce the complete “sum
of the products”. Let’s define:

vely, x=Ugx-U,, w=pU,;, then we have:
v=xw-cw', wherec= v2g {4}

By that merit a single MOSFET device offers great potential and yields a rather
simple and unique way of constructing a “linear combiner” part of an “artificial neuron”
in hardware. It is true that the above relationship is “far” from linear in general. In that
respect, the suitability of the above might be under question. But in practice, it can be
almost always provided that the drain-source voltage is much less the “effective gate”
voltage such that the above relationship is “very close” to linear.

Let’s examine the linearity error:
&= (V = Vigea)/ Vigea:- 100, [“0]
o, &=-cW/x)==05U4/(Ug—U,). 100, [%]
This leads to the following observations for the linearity error defined as above:

» the error is independent of 3 (independent from MOSFET geometry and
technology process constants)

» the smaller the drain-source voltage and the greater the “effective” gate-
source voltage is, the “more linear” is the relationship.

Let’s inspect that error, for typical values of the above quantities:
for U, = 200 mv and Ug—Uy = 1v, we have ¢ = 10 %. Is this “that” bad ?
No, not at all. This error is completely acceptable, due to the following two main
reasons:

» the output of the linear combiner is usually processed by a non-linear
function anyway, a large variety of these functions have been considered in
the literature which all show very similar performance results, from which
we can infer that absolutely accurate performance of the linear combiner is
not absolutely “required” since the final output varies for the various
functions..

» the training of the weight coefficients of the above PE is adaptive, it can
and will compensate for “some” non-linearity in the linear combiner.(see

3

50

General overview of the hardware model with any number of “synapses”.

This article will only briefly show the hardware of the above model using MOSFET
devices in any, even low performance CMOS technology. For the complete hardware
solution see [4].

The essence of the given hardware solution is a single MOSFET device to model the
synaptic activity of an artificial “neuron”. The voltage across the source and drain
regions determines the weighting coefficient(s) in {4} and the gate-source voltage
represents the input stimulus applied to that synaptic connection either by the input
signal of the network at that node or by the previous-layer PE’s. The drain current
representing the “internal activity” of that particular synaptic connection is then summed
up along with all of the “activity” signals induced at the rest of the “neuron” synapses.
Finally the overall “activity” signal is processed through a non-linear (sigmoidal)
function to generate the “neuron’s output” signal. The described model is shown on
Fig.1.

I Y output
| et 1
i i
|]
]]
L oy I | 1 ———
T ; ds ¥ e
: [' ! [
o ! s !
RS I [Us T
! Lom I i ! tom . I
! [} v ' b 1l ' 1
i (SR U | L L
i : i] i
| b s . ! 1 e
I 2s
i i i |
i i i i
! ! serx setw 1 '
i H i |

Advantages of the given hardware model

The advantages of the above presented model are primarily stemming from the fact
that it is hardware and as such it will not require any computational operations of a
computer, thus in feed-forward mode allowing for real-time applications for signal
processing, pattern recognition etc. So, the first unbeatable advantage over software
models is speed. The second is simpliciry, which in comparison to the hardware models
using arithmetic units, adders and multipliers is in order of magnitudes less in terms of
number of gates. Furthermore, it allows for significantly large scale of integration which
can easily accommodate 10.10™ to 100.10™ number of PE’s in a single chip. As noted in
[5], the “capacity” of a neural network to “memorize” is proportional to the order of the
number of processing elements N given by:

C~O0O(N?)

51

Which means that the VLSI implementation with as many PE’s as possible is desired
could be desirable and beneficial. Thus feasibiliry to VLSI implementation is also
essential advantage of the above described approach.

Summary

In summary, one can see that simulating an artificial neural network in hardware can
be very advantageous in many aspects. Many of those advantages are being utilized in
the given model. The distinct features of the presented hardware model are it’s
completely analog circuit design, simplicity and VLSI feasibility. More specifically, the
use of a single MOSFET device to model the synaptic connection strength (weight) not
only offers much more straightforward implementation then any of the digital
implementations observed in the literature but also among the analog processing
solutions found is probably one of the simplest to model the multiplication function.
Here it should be noted that the given solution does not impose no special requirements
neither to the lateral topology of the MOSFET nor to the vertical geometry and
technology parameters. This is major advantage since it allows the model to be
implemented even on low-performance CMOS technologies and represents generally
technology independent design.

References:
[1] “Neural Networks —a comprehensive foundation”, Simon Haykin, 1991 -
[2] “CMOS Analog Circuit Design”, P.Allen, D.Holberg, 1987

(3] “LMS training of a PE with non-linearity with respect to weights as a linear
classifier”, M-Milev, IEEE publication pending, 2000.

[4] “Hardware model of an Artificial Neural Network for VLSI CMOS
implementation”, M.Milev, (IEEE publication and patent pending).

[5] “Neural Networks — anniversary overview”, IEEE transactions, CAS, 1992.

52

	48
	49
	50
	51
	52

