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Abstract: A new digital multi-output IIR biquadratic filter section permitting independent
tuning of the filter parameters (poles and zeros angles and distance to the unity circle) is proposed
in this paper. For narrowband elliptic LP and wideband dr filters it is even possible to tune
simultaneously both the poles and zeros angles by changing a single multiplier coefficient and to
keep in the same time a constant unity-gain in the passband. The main describing relations are
derived and the tuning characteristics and their limitations are investigated. No other section with
such possibilities is known in the literature. All theoretical results are verified experimentally.

1. INTRODUCTION
Recently there was a constant interest in the design and investigation of variable
digital filters [1]. There are, however, severe problems in the realization of variable
IIR filters and the most popular method known — that of Mitra, Neuvo and Roivainen
(MNR) [2], based on parallel allpass structures with real or complex coefficients and
employing the allpass (frequency) transformations of Constantinides followed by
truncated Taylor series expansions — is quite approximate. Two other promising
approaches were advanced recently: a) cascaded realization of the filter followed by
truncated Taylor series expansions of the coefficients of each second-order section
[3]; b) realizations using equal first- or second-order sections without any truncations
[4], [5]- In both approaches variable second-order sections with independent tuning of
the characteristics are required. After an extensive search in the literature it was
found that only one such circuit (that of Murakoshi, Watanabe and Nishihara - MWN
[3]) is known, but it is creating serious practical problems when elliptic transfer
functions are realized and is not able at all to realize non-elliptic transfer functions.

In this contribution, we develop and investigate a new biquadratic section with a
canonic structure, which meets all requirements and realizes equally easy elliptic and
non-elliptic transfer functions with independently tunable characteristics. And what is
more important, it is possible to tune the poles' and zeros' angles simultaneously by
changing the value of a single multiplier coefficient retaining thus the selectivity of
the tuned filter. The proposed section possesses very low sensitivity for poles and
zeros near z=1 (the most difficult case or pole-zero disposition) which means very
high accuracy of tuning of narrowband filters or realizations with very short
wordlength.

2. BASIC CONCEPT

Given a general second-order transfer function with zeroes on the unit circle

B -1, -2 -1, -2
H(z)=gq 1 2cos®zz_]+z2 =g 1+g3: +z .
1-2r,c080 27" +r,z 1+ g1z + g2

21



where:
_l+g+g .

o=~ —=; (for LP elliptic transfer function) (2)
2+ 23
1- 5 . .
g = %i; (for HP elliptic transfer function) 3)
—83
g, =025(1+ ga1+8 ); &3 =2; (for LP transfer function) 4)
8,=025(-g)+g,), g3 =-2; (for HP transfer function) (%)

and g, is taken to ensure a unity gain for the most important frequency (DC for LP
and Fy/2 for HP) in the passband.

It looks easy at first sight to tune independently @,, ®, and r,, by just trimming
respectively g3, g; and g, and to use for this the common direct form realization.
But any of these tunings will change also the passband gain and in order to
compensate it, a recalculation and trimming of g, will be necessary. Thus, even for
tuning of a single parameter two multiplier coefficients have to be recalculated and
reprogrammed. Additional complication is the division operation in (2), (3) which is
difficult for digital implementation. And, finally, it is impossible to tune
simultaneously @,, and ©, by changing a single multiplier coefficient.

The only known section permitting most of these independent and coupled
tunings is the MWN-section [3], realizing the following transfer function:
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where ©; and ®, might be tuned by changing B and v, while (1+a) remains

unchanged. Unfortunately, there is no easy way to realize non-elliptic transfer
function: it is necessary to maintain y as

1+ 8 ’ )
1-5

in order to have g; = 2 (3) for LP filter for example and when B is changed to tune the
LP filter cutoff frequency, y must also be recalculated (incl. division operation) and
reprogrammed. For narrowband LP filters B ~ 1 and it is producing (7) values for y
larger than 1000, that are hardly practical for digital implementation. Additionally,
the DC gain in this non-elliptic case also has the large value of H (0)=4/1-p) and
must be compensated by a scaling multiplier with an inverse (and very small value)
recalculated every time when B is changed. And as for narrowband LP filters ax 1
and B~ 1, this realization will have quite high sensitivity to the filter coefficients,
which means low-tuning accuracy and bad behavior in limited wordlength
environment.

The basic concept which we adopt for further investigations is to try to find or to
develop a multi-output section, having a transfer function denominator like that in
Eq. (6) and non-elliptic LP and HP outputs with unity gains for the most important
frequencies in the passband. Then we can construct an elliptic transfer function as

y=2
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Hp(z)=yH p(2)+ Hyp(2), (8)
where y will control not only the zero position, but also the type (LP or HP) of the
elliptic filter.

3. NEW CIRCUIT DESCRIPTION

The only other than the MWN-section with a denominator similar to the one in
Eq. (6), found in the literature, is the low-sensitivity biquadratic section investigated
in [6]. There is another group of sections with denominator as in (6), proposed in [7],
but they can realize only BP and BS transfer function and are not applicable in our
case. After implementing the procedure (8) and introducing additional operations
(mainly summing), we obtain the final structure, shown in Fig.1. Part of this structure
was investigated and published in [5].

J
Ing WI ‘ 1
N e —>{t)
o 21 Lo .
el
ahe B! "

v

- Out AP Out BP Qut HP Out BS  Out Elliptic Out LP
Fig. 1. New biquadratic multi-output variable filter section
The transfer function at the elliptic output 1s
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where the multiplier coefficients, “obtained after sensitivity minimization, are
calculated from those in (1) using the formulae:
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The numerators of the transfer functions at the other outputs are

Npp(z2)=05a(+2"1)2; Nyp(2)=052-a-b)1-z"") (11)
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The most amazing quality of all these transfer functions (except Hg(z)) is that
they have unity gain for the most important frequencies in their passbands.
Concerning Hg(z), it has DC gain equal to y and thus the type (LP or HP) of the
elliptic transfer function is controlled. It requires then an additional multiplier with a
coefficient 1/y at the input or at the output. It is a complication, if it has to be also
tuned, but it will appear in all our further considerations that it will stay fixed.

It is clear from (9) - (13) that it is possible to tune independently ©, and r, by
changing @ and b and also @, (in the elliptic case) by trimming . Many other
possibilities are available, as it will be shown next.

4. RANGE OF TUNABILITY INVESTIGATION

We have observed in [4] that an independent tuning of ®, and r, by changing «
and S in the MWN-circuit is possible within some limited frequency range out of
which the passband ripples are increasing too much. The same was found also for our
section in [5]. It means that the cutoff frequency of the non-elliptic LP and HP filters
cannot be tuned freely over the entire frequency range. It was shown firmly, however,
in [4], [5], that the range of tuning of the cutoff frequency, while the ripples are kept
in the required limits, is much wider than that, achieved with MNR-circuit [2]. And
there should not be limitations for the tuning of the central frequency and the
bandwidth of the BP and BS filters.

Another very important feature can easily be sensed when inspecting Eq. (9). The
core structure of the section in Fig. 1 was developed for realization of poles (and
zeros) near z=1, i. e. narrow-band LP and wide-band HP filters For such case (most
interesting for variable realizations) g; ~-2, g, ~1 and g3 ~-2. According to (10);
itis producing @ <0.01, »<0.01 and y in the range from 0.1 to 10. From (9) and e))
it 1s easy to find that
2=-b)-a(y+1) (1-0.5b)~a (14)
(2-b)+a(y-1)’ N

It is clear that for the values of a,b and y so mentioned, the second terms
everywhere they exist in (14) are absolutely negligible compared to the first. Thus,
the arguments of both arccos-functions are quite equal and near to unity. And, what is
more important, they depend in about the same way on a. It means that ®, and G,
could be tuned simultaneously by changing only the multiplier coefficient a. It means
that there will be no need to trim y in order to tune @,, there will be no need to have Y
variable and no additional multiplier with a coefficient 1/y at the input or at the output
will be necessary. And if ®, and ©, are changed with the same speed, when trimmed
by a, then the selectivity of the tuned filter will remain quite constant. In order to
check all this, an elliptic LP filter section was designed and simulated and the results
of the tuning are shown in Fig. 2a. It is seen that even for values of g, g, and g
(as given in the figure) not so close to the extreme values (g ~-2, g, ~1 and
g3 ~-2. ) the cutoff frequency and the zero-frequency are tuned very successfully in

®, =arccos O, = arccos
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the same pattern (and thus retaining the magnitude steepness and the selectivity') by
changing only a single coefficient a. This 1s illustrated even better in Fig. 2b. where
the tuning characteristics of ©. and ®, for different values of the coefficient v are
given. It is seen that tuning curves of ©. (a) are staying almost parallel to ©, (a). even
when v. resp. the distance between ©. and @, 1s changed considerably.
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Fig.2 Simultanious tuning of the cutoff frequency and the zero-frequency of an elliptic LP
by trimming only the coefficient a (a); tuning curves of ©. and ©; for different v

5. EXPERIMENTS

A number of experiments (simulations using MATLAB) have been performed in
order to verify all the results and statements derived in this work.

In Fig. 3 the tuning of the cutoff frequencies of an LP and a HP non-elliptic sec-
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Fig 3. Tuning of the cutoff frequency of non-elliptic LP (a) and HP (b) filters for ¢l=-1933:
22=0.934, apom =5.0e-4



tions are demonstrated. The range of tuning in both cases is much wider, compared to
the results with MNR-filters [2].

In Fig. 4 it is shown how successfully the central frequency and the bandwidth of
a BP filters are tuned independently by changing the multiplier coefficients @ and 5.
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Fig. 4. Tuning of the central frequency (@nom =5.0e-4)(a) and the bandwidth (a =0.03,
bnom=0.066)(b) of a BP section (g1=-1.933; 82=0.934) with by changing a and .

6. CONCLUSIONS

The new section, proposed in this paper, provides an independent tuning of the
filter parameters in a ways no other known circuits do. It is possible, moreover, to
tune simultaneously both the poles and zeros angles by changing only a single
multiplier coefficient and to keep in the same time a constant unity-gain in the
passband. It has also very low sensitivity and permits a very high accuracy of tuning.
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