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ABSTRACT
The applicability of basic functions from different wavelet families to Wavelet
Shrinkage ECG denoising has been investigated. A method for ECG denoising based
on Wavelet Shrinkage with Time-frequency Dependent Threshold has been applied.
The experimental results have been compared on a wide ECG database and they have
shown existence of strong relationship bétween the wavelet function support and
denoising quality.

I. INTRODUCTION

One of the most serious problems in the registration of electrocardiographic (ECG)
signal is the parasite interference of muscle active potentials — electromyographic
(EMG) signals. The EMG spectrum is wide-band and overlaps the ECG spectrum
[1]. This leads to difficulties in determining ECG signal parameters important in
medical diagnostics.

The ECG contains pulses with different frequencies and amplitudes — high-
frequency Q, R, S waves (forming QRS complex) and the “slow” low-pass P and T
waves (Fig.1). Their time-varying behavior determines ECG as highly nonstationary
signal.

The noise presence problem can be partially avoided by low-pass signal
filtering. This approach improves SNR but decreases the amplitudes of high
frequency Q, R and S waves, which is undesirable in diagnostics of some diseases.

Recently a new technique named Wavelet Shrinkage (WS) have become very
popular for signal denoising [2]. In this approach the signal is first decomposed into
wavelet domain and then the coefficients are “shrinked” using a nonlinear threshold
depending on the noise characteristics. There are two crucial steps in applying this
procedure:

Appropriate choice of expansion basis function

We need a function that efficiently uncouples the signal from the noise.
Wavelets are appropriate candidates for such functions since they have good time
and frequency localization as well as good decorrelation properties [3].
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Appropriate choice of shrinking threshold

The threshold must be function of the statistical characteristics of the noise in
order to preserve the informative signal parts. The shrinking threshold for WS ECG
signal denoising proposed in [4] is shown in Fig.1. It is high for the non-informative
wavelet coefficients (which are harder influenced by noise) and low for the
informative coefficients, representing important signal features.

The following questions arise: 1. Does there exist best wavelet basis for WS
ECG signal denoising when using the threshold in [4]. 2. What is the optimal filter
length for such denoising approach.

The presented work gives the answers of these questions, based on
comparative study of wavelet shrinkage applicability. A database of ECG signals
with different behavior - pathological and healthy - have been used in the
experiments.

Part two of the paper briefly describes the wavelet basis functions and their
properties important for denoising tasks. Part three presents the experimental results
obtaining by denoising with WS using different wavelets from several wavelet
families. Conclusions are formulated in Part four.

II. WAVELET BASIS FUNCTIONS
Wavelet Transform has localization, multiresolution and decorrelation properties,
which make it a powerful technique in many signal processing applications [51, [6].
From mathematical point of view they represent an admirable relationship between
continuous time basis functions and discrete time digital filters, working on discrete
signals and allowing fast algorithms [3].

Wavelet Transform decomposes the analyzing signal in a small number of
significant coefficients, while the rest amount of small coefficients is considerable
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[2]. When a signal noise-mixture is decomposed, the signal features are represented
by large wavelet coefficients and the noise is spread over all coefficients. Thus the
small coefficients are harder influenced by noise. Donoho has been explored this
wavelet property in denoising of different (mostly synthesized) signals, and has
proposed several shrinkage thresholds [7].

There are many wavelet families, designed in different mathematical
constraints for different practical applications.

Daubeshies has recently developed its famous family of minimum phase
wavelets with compact support and maximum number of vanishing (zero) moments
[6]. The Daubechies wavelets are compactly supported and can be obtained by
iterated regular filters. The degree of regularity represents the function continuity and
continuity of its derivatives. A necessity condition for regularity is a presence of zero
at frequency w=r in the iterated filter. There are also several sufficient conditions
developed in [6]. Roughly speaking they represent the relation between the filter
length and the number of vanishing moments -the longer the filters have more
vanishing moments. :

However the phase of the Daubeshies’ filters is not linear. It is impossible to
construct orthogonal and compactly supported wavelet with linear phase, as shown in
[6]. But the symmetrical wavelets (linear phase wavelets) are preferable in some
applications where non-symmetrical filters can make the phase distortions around
edges more visible. i |

Looking for more symmetry two other groups of orthogonal wavelets have
been constructed [6]. Coiflets have maximum number of vanishing moments for both
the wavelet and the scaling function. Symmlets, called also least asymmetrical
wavelets, have almost linear phase and are the least asymmetrical in the group of
orthogonal wavelets. ;

Relaxing the orthogonality conditions [5] one can construct biorthogonal
wavelet pair, where the analysis and synthesis decomposition functions are different
and both symmetrical. This changes the number of vanishing moments and the
support of analysis and synthesis wavelet. :

In the case of ECG signal the wavelet choice problem becomes more difficult
because of its nonstationary behavior. Therefore one need to use all wavelet
properties while some of them are mutually exclusive. More smoothed wavelets
(longer filters) are needed especially for good P and T waves representation. But
longer filters could not time localize the fast QRS complexes. Linear phase wavelets
are preferable in order to spread the distortions symmetrically but we trade the single
wavelet for pair of analysis/synthesis (symmetrical!) wavelets.

These preliminary assumptions emphasize our experimental effort in this task.

Table 1 summarizes the wavelets used in our investigations.
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Family Daubechies | Coifflets Symmlets | Spline Villasenor

Ortho- Orthogonal | Orthogonal | Orthogonal | Biorthogonal Biortho-
gonality gonal
Compact Yes Yes Yes Yes Yes
support

Filter Order |N=2,..,10 |N=I,..,5 |N=4,.,10 |Nd=1;Nr=1,3,5 |[Nd, Nr]=
Nd=2;Nr=2,4..8 | [7,6], [3,2],
Nd=3;Nr=1,3.9 | [3,5], [5.4]

Support 2N-1 6N-1 2N-1 2Nd+1 2Nd+1
width 2Nr+1 | 2Nr+1
Filter lengths | 2N 6N 2N [2Nd, 2Nr] [2Nd, 2Nr]
Symmetry far from close to close to yes Yes
Vanishing N for y 2N fory | Nfory Nr-1 for y Nr-1 for y
moments 2N-1 for [}

Table 1: Wavelet’s basic features

I1I. RESULTS

The ECG database used in our experiments contains 192 8-channels signals with 3,6
sec duration, 200 Hz sampling rate and 8 levels of quantization. They include
different patients records with heard deceases and healthy.

Each of the signals has been mixed with white noise achieving SNR= 14dB
The signals have been denoised using the WS procedure described in Part I, and the
residual signals (the difference between the noise free signal and the denoised signal)
have been obtained. The corresponding SNRs have been averaged over all signals
and channels. They have been used as objective measures in comparison of different
wavelet’s applicability.

The results show that there is strong relationship between the filter length and
the noise suppression level when orthogonal wavelets have been used. Best results
are obtained using filter lengths between 8 and 12. Increasing the length of the filter
the wavelet smoothness capability grows but time localization around QRS areas
fails. As a result some oscillations may occur in the ends of the QRS areas.
Decreasing the length of the filter may produce artifacts in the areas of P and T
waves. ‘

Fig. 1 shows the average SNR versus the filter length after WS denoising using
Daubechies wavelets, Symmlets and Coiflets.

Similar results arise in the case of biorthogonal wavelet denoising. For
Villasenor wavelets the best working filters are 7 and 6-order filters. Despite their
symmetry the shorter filters lead to worse results as in the orthogonal case. The
biorthogonal spline wavelets produce best results for filters’ lengths 2 and 8.

In each family the “favorites ” are as follows: Daubechiess, Coiflet2,
Symmlet4, Spilne28 and Villasenor67 where the numbers after the wavelet’s name
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represents the order of the filters. This group of “winners” leads to very similar
results. The difference between the best and the worst average SNRs are less than
0.25dB. That’s why we cannot point best wavelet for this application. In the same
time the choice of the filter length is very important, because the filter order
represents the smoothness and regularity properties of the wavelet.

The denoising results for the five “winners” are illustrated in Fig.3. We can
see from the figure that all wavelets have given good results — the amplitudes of the
high frequency Q, R and S waves have been preserved and in the same time the high
frequency noise outside the QRS area has been suppressed successfully.

IV. CONCLUSION
The capabilities of the algorithm for WS ECG denoising proposed in [4] have been
investigated. Different wavelet families have been theoretically and experimentally
compared due to their applicability as basis functions in wavelet shrinkage denoising.
The important role of the wavelet support (the length of corresponding filter)
has been pointed out. Best results are obtained using filter length between 8 and 12.
The small differences in the results between the best wavelets from each family show
that the choice of wavelet type is not critical in this application.
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