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Abstract. Linear-phase FIR filters are known 1o have some very desirable features like guaranteed
stability, free from limit cycles and phase distortion, and low coefficient sensitivity. This paper
gives briefly a mathematical basis of the problem — symmetry/antisymmetry constraints imposed on
impulse response, different types of FIR characteristics and their main features. Some imporiant
aspects and design problems of one- and two-dimensional FIR filters are considered, too (input
specifications, accuracy, and practical recommendations). Two new algorithms based on the Least
Squares weighted criterion are presented. The first method is aimed to reject the Gibbs’
phenomenon of one-dimensional linear-phase FIR filters using a set of equally-spaced fixed levels
(margins) in the magnitude response. The second one could be used for design of two-dimensional
(2-D) FIR filters (special application is given for fan 2-D filters).

1. Introduction

Digital filters with a finite-duration impulse response (FIR, nonrecursive) have
characteristics that make them useful in many applications. They can achieve exactly
linear phase and can not be unstable. The problem of optimum frequency domain
design of such kind of filters can be easily formulated as a real approximation problem
and efficient algorithms for its solution exist. General- or special-purpose hardware
could be used for the realization. Other attractive features of FIR filters are low
coefficient sensitivity and free from the limit cycles.

The nonrecursive filter is naturally suited for certain specific applications, e.g. to
perform numerical differentiation or integration; it is also suited for applications where
the prescribed specifications can not be met by conventional Butterworth or elliptic
approximations. Other application areas are speech and image processing, stochastic
filtering, phase equalization for communication systems, etc.

II. Design methods for linear-phase FIR filters

Design algorithms for linear-phase FIR filters could be divided into two main
groups: (i) methods for design of one-dimensional filters, and (ii) methods for design of
multidimensional filters (special case are two-dimensional filters). Frequently, the
second type of methods are extension of the first one using suitable transformation
procedures.
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2.1. One-dimensional (1-D) FIR filters

There is a big variety of methods and approximation criteria for design of one-
dimensional FIR filters. The oldest ones are those based on the fourier series, window
functions or numerical-analysis formulas [1-3]. Window functions give a good
alternative of other techniques for the reduction of Gibbs’ oscillations, which show as
a ‘ripple’ near to the passband edge of the amplitude response. The most frequently
used window functions are Rectangular, Hann, Hamming, Blackman, and Kaiser
windows.

Other widely used approximation method is frequency-sampling approach [3,4].
Direct design with this method is possible by applying the inverse DFT to equally
spaced samples of the frequency response. If frequency-sampling design with an ideal
desired frequency response having a discontinuity causes too much oscillation or
overshoot between the samples, a transition region can be added to the 1deal response.
The shape of the transition function can have an important influence on the overall
design. Other different techniques for reducing Gibbs’ oscillations are based on spline
function [5], straight line [1], trigonometric functions, etc.

The weighted Chebyshev method can be used to design optimal linear-phase
FIR filters. A classical technique uses iterative Remez exchange method (Remez,
1934) which can be applied to determine the location of the required critical
frequencies (local externals) of an equiripple filter. Later Parks and McClellan [6,7]
have developed a particularly useful software interpretation of the Remez method. The
user can specify the desired magnitude response in a piecewise-constant fashion over a
maximum of 10 contiguous frequency bands. Relative weights could be added to each
of these bands.

Least squares (LS) method represents an alternative of ‘Parks-McClellan’
algorithm. The first definition [1] of this approach is the sum of the squares of the error
measured at a finite set of frequency sample points. The second one is the integral of
the square of the error over a finite or infinite range of frequencies. There are different
modifications of LS idea in the literature [8-12]. Vaidyanathan et a/. [8] defined a new
term ‘eigenfilter’ - filter, completely constructed according to the LS method, which
coefficients are the components of eigenvector of a real, symmetric and positive-
* definite matrix. Weighted LS approach for design of filters with equiripple passband
and stopband 1s given in [9]. Other different variant of the method is discussed in [10]
with minimax passband and LS stopband of the filter.

2.2. Two-dimensional (2-D) FIR filters

Over the years an extensive array of techniques for designing 2-D FIR filters has
been accumulated [13-22]. These techniques can be classified into the two categories
of general and” specialized design. First category of techniques are intended for
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approximation of arbitrary desired frequency responses, usually with no structural
constraints on the filter. They include approaches such as windowing [15] of the ideal
impulse response or the use of suitable optimality criteria possibly implemented with
iterative algorithms. Methods of the second category are applicable to restricted
classes of filters. The stopbands and passbands of filters encountered in practice are
often defined by straight-line, circular or elliptical boundaries. Specialized design
methodologies have been developed for handling these cases.

According to the filter length and symmetric characteristics, there are four major
types of magnitude response for linear-phase 1-D FIR filters, and they are denoted as
Case I, Case II, Case III and Case IV [2]. A similar case exists for quadrantally
symmetric linear-phase 2-D FIR filters in which there are sixteen possible types of
filters. As a whole, the theory for designing 1-D FIR filters can be extended to two or
more dimensions. This is true for eigenfilter approach [16,17], minimax design
[18,19], frequency-sampling method, and LS approach [20-22].

II1. New LS methods for design of FIR filters

3.1 Mathematical basis of the methods

The properties of the two new LS methods are compared in Table 1. Detailed
description of these methods is given in [23,24].

LS Method I LS Method II
FIR filters in D
Frequency W e Np-1 N,-1 _
response H(™)= [_Zoh(/).e ’ H(™. gD = 3, D honany e M g
- n=0 n,=o
Type of impulse Symmetrical A(l) Quadrantally symmetrical A(1;,n,)
Tsspomse, lengih N odd (Case I) Ny, N, odd
Ny-1 Ny-1 Ni-1 Na-1
h(h‘_kl) _kzjzh(l—‘]ﬂ, > +k2)
o - 2 2
Impulse h(Nz L, 1) = h[% - /J ? ’
response _ (er Na—1 ﬂ): [N,—l Na—1 )
h 5 +k, 2 ka|=h = +ki, 5 +k-
for 1 </<(N-1)2 for ISk<W -1)2,1<kh< (N, -1)2
(N-1)12 NM-1 Na-l
M(@)= Y d).coslw Z 2
Amplitude 1=0 M(awn, @) = Z Za(nl,nz). COSHM, @, - COSH,
response c(N=2h((N-1)/2+1)= =0 =0

=2h((N-1)/2-1)
for 1<7<(N-1)2
c(0)=h((N-1)/2)

a(ny,ny) — see [24]

Table 1
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3.2 Formulation of LS design problem and solution

Summary of design steps for the two new techniques 1s given in Table 2. In the
first method we have introduced f equally spaced fixed levels in the transition band in
order to reduce Gibbs’ oscillations. In other words, we redefine the ‘standard” LS
method with stepwise form of D(w) [23]. By analogy, O(®) is extended with f new
values corresponding to the levels in transition band.

The second LS method is applied to the special type of 2-D filters, so called
“fan’ filters (Fig.1). Desired amplitude response D(w;,@,) i1s given in Table 2. The
contour plot of designed fan filter with Ny=N,=17 is shown in Fig.2.

LS Method 1 LS Method II
Least- 05 2 _ 2
mzz; 2= [ O(0)[D(0) - M(0)] do g = “'IHD(“)V“:)*M(‘W@:)] dodo, +
0 »
square ,
e?ror @ € [0,0.5] — normalized frequency | * BH M (r.0,) dodo, =aE,+BEs.
region s

p - passband, s - stopband

Desired | D(w)— different depending on the type D ):{1 p0sw<n , w<o.sx
ampli- of the filter (lowpass, highpass, T s esesa 0w <a-w,
tude bandpass, or bandstop)
g(sp§nse NEW: Redefinition in transition band Fan 2-D filter (Fig.1)
@
Weighted Olw) a, B
function | \Ew: Redefinition in transition band
k
> s c1) = do @Q+pR)a=ud
1=0
] 05 =|lCw, o, .CT( W, dw]da),
Ryisteni dnr= [O(w).cos(2.nw).cos(2z.lw)dw Q I,',[ (oade losa)
of linear ’ 05 R =[[¢(0,.0.)C (0, 0,)dodo,
equations | dnin = J;Q(a)).D(w),cos(Zﬁ.na))da) s

=0,k k=(N-1)2 4= [Pl 0.0 0)do do,

c(wy ,an) — see [24]

Table 2

The coefficients of the filters in the above discussed methods are obtained by
solving a system of linear equations. The absence of iteration procedure is the main
advantage of these methods. Also, closed form expressions are derived for the
elements of matrices which appear in LS approach [23,24].
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Fig.1 Specification chart of a fan filter Fig.2 A contour plot for 17 x 17 fan

filter with ©,=0.3 =

IV. Conclusion

This article presents a comparative review of different methods for design of 1-

D and 2-D FIR linear-phase filters. Least squares technique gives a good alternative of
other existing approaches with a lower complexity and an absence of iteration
procedure. A mathematical background of two new LS algorithms ‘is compared in
Table 1 and Table 2. The second method which is applicable for 2-D filters leads to
more complex formulas due to the (w;,@,) — plane. Nevertheless, these analytical
methods enable fast calculation and simplicity compared with other iterative
algorithms.

—

References

. T.W.Parks and C.S.Burrus, “Digital filter design”, John Wiley & Sons, Inc., 1987.
. LR.Rabiner and B.Gold, “Theory and application of digital signal processing”,

Englewood Cliffs, NJ:Prentice-Hall, 1975.

. AV.Oppenheim and R.W.Schaffer, “Digital signal processing”, Erglewood Cliffs,

NJ:Prentice-Hall, 1975.

. F.J.Taylor, Digital filter design handbook, New York:Dekker, 1983.
. C.S. Burrus, A.W.Soewito, R.A.Gopinath, “Least squared error FIR filter design with

spline transition functions”, Proc. of ICASSP, Albuquerque, New Mexico, USA, Apr.3-6,
1990, pp.1305-1308.

. T.W.Parks and J.H.McClellan, “Chebyshev approximation for nonrecursive digital filters

with linear phase”, JEEE Trans.Circuit Theory, v.19, March 1972, pp.189-194.

. T.W.Parks and J.H.McClellan, “A program for the design of linear phase finite impulse

response digital filters”, JEEE Trans.Audio Electroac., v.21, Aug. 1972, pp.195-199.

. P.P.Vaidyanathan and T.Q.Nguyen, “Eigenfilters: A new approach to least-squares FIR

filter design and application including Nyquist filters”, /EEE Trans.Circuits Syst., v.34,
Jan.1987, pp.11-23.

126



9. V.R.Algazi, M.Suk, C.SRim, “Design of almost minimax FIR filters in one-and two-
dimensions by WLS technique”, IEEE Trans.Circuils Syst., v.33, June 1986, pp.590-596.

10. J.W.Adams el al., “FIR digital filter design with multiple criteria and constraints”, Proc.
of ISCAS, Portland, USA, May 8-11, 1989, v.1, pp.343-346.

11. Y.C.Lim and S.R.Parker, “Discrete coefficient FIR digital filter design based upon an
LMS criteria”, JEEE Trans.Circuits Syst., v.30, Oct. 1983, pp.723-739.

12. M.H.Er, “Computer-aided design of FIR filters”, Electronics Letiers, v.28, no.3,
Jan.1982, pp.214-216.

13. D.Dudgeon and R.M.Mersereau, “Multidimensional digital signal processing”,
Englewood Cliffs, NJ:Prentice-Hall, 1984.

14. JSLim, “Two-dimensional signal and image processing”, Englewood Cliffs,
NJ:Prentice-Hall, 1990.

15, A.Antoniou and W.-S.Lu, “Design of 2-D nonrecursive filters using the window
method”, IEE Proc., v.137, Pt.G, no.4, Aug. 1990, pp.247-250.

16. S.-C.Pei and J.-J.Shyu, “2-D FIR eigenfilters: A least squarcs approach”, IEEE
Trans.Circuits, Syst., v.37, Jan.1990, pp.24-34.

17. S.-C.Pei and J.-J.Shyu, “A unified approach to the design of quadrantally symmetric
linear-phase two-dimensional FIR digital filters by eigenfilter approach”, IEEE Trans.
Signal Proc., v.42, Oct.1994, pp.2886-2890.

18, C.-K.Chen and J-HLee, “McClellan transform based design techniques for two-
dimensional linear-phase FIR filters”, [EEE T rans. Circuits, Syst., v.41, Aug.1994,
pp.505-517.

19. S.Namamura, Z.-Y.He, W.-P.Zhu, “Fast calculation of the coefficients of the
generalized McClellan transform in 2-D FIR filter design™, Proc. of ISCAS, v.1, Chicago,
Illinois, May 3-6, 1993, pp.918-921.

20. M.T.Hanna, “A closed-form least squares solution to the discrete frequency domain
design problem of two-dimensional FIR filters”, Proc. of ICASSP, Detroit, Michigan,
May 9-12, 1995, pp.1252-1255. .

21. W.-P.Zhu, M.O.Ahmad, M.N.S.Swamy, “An analytical method for the frequency
domain least square design of centro-symmetric 2-D FIR filters”, Proc. of ICASSP, v.3,
Minneapolis, Minesota, Apr.27-30, 1993, pp.97100.

22. G.Gu and J.L.Aravena, “Weighted least mean square design of 2-D FIR digital filters”,
IEEE Trans. Signal Proc., v.42, Nov.1994, pp.3178-3187. .

23. G.S.Mollova, “Weighted mean squared error criterion with fixed-levels modification for
linear-phase FIR filters design”, Circuits, Syst. Signal Proc., v.15, no.5, Birkhauser Publ.,
Cambridge, USA, 1996, pp.581-595.

24. G.S.Mollova, “Analytical least squares design of 2-D Fan type FIR filter”, Proc. of
DSP'97, v.2, Santorini, Greece, July 2-4, 1997, pp.200-204.

127



	122
	123
	124
	125
	126
	127

