Two’s Complement Arithmetic

A.P. Thijssen and H.A. Vink

Delft University of Technology / Philips Research Eindhoven
Faculty of Information Technology and Systems
PO Box 5031, 26 00 GA Delft, The Netherlands
mail to A.P.Thijssen@its.tudelft.nl

Abstract

Two’s complement arithmetic is generally structured as a collection of arithmetic
rules, implementation rules and special tricks, of which the correctness and restrictions
for application can hardly be verified systematically. This paper shows how two’s
complement arithmetic can be based on. mapping the binary arithmetic onto a set of
residue classes modulo 2". This set of residue classes appears to be a good basis for
proving the two’s complement arithmetic and for the subsequent implementation in
hardware or software. This conclusion is true for addition and subtraction, as well as
for multiplication and division. In this way an easy implementation and verification of
binary arithmetic in hardware or software is possible.

Key words
Addition, binary arithmetic, multiplication, subtraction, two’s/one’s complement
arithmetic

1. Introduction

The usual pencil-and-paper notation for signed integers is as sign-and-magnitude.
In early days of computer arithmetic it was found that sign-and-magnitude arith-
metic could not be implemented economically. The circuits became relatively
complicated because of the separate processing of the sign bit, the use of addition
as well as subtraction in the implementation, and the need for interchanging
operands when the result of a subtraction is negative. Other number represen-
tation systems were found, e.g. the two’s and the one’s complement, with better
properties for implementation. This paper focuses on a theoretical basis for two’s
complement arithmetic by mapping the integers of the two’s complement domain
D3 onto the set of residue classes [m] modulo 2", In the domain D} the two’s
complement system for addition/subtraction and for multiplication/division is
closed. All these operations can be performed in a way that is isomorphic with
normal integer arithmetic in the corresponding integer domain. For one’s comple-
ment arithmetic a similar approach is possible. Extensions to nine’s and ten’s
complement arithmetic are simple. Another way of interpreting two’s comple-
ment binary numbers is described by [Dattatreya, 1993). In his approach the

150

bitstring m=a,_ja,_, ---a,_,a¢ gn7c corresponding to a binary two’s comple-
ment number is interpreted in the sign-and-magnitude domain as

n-2
miz'-a, ;275 ey o (1)
i=0
In proving the implementation of binary arithmetic this difference in the signs of
the bits of the binary representation introduce many implementation errors, in
hardware as well as in software. The basic rules of two’s complement arithmetic
are discussed in [Sklar, 1972]. We assume the reader has some knowledge of the
elementary rules of computer arithmetic.

Numbers modulo m

Two integers m; and m, are said to be congruent modulo integer m iff m is a
divisor of m; —m,. We denote this relation as m; =m, (mod m). A congruence
relation on the set of integers is reflexive, symmetric and transitive. It is an
equivalence relation on the set of integers [Hartmanis, 11966]. An equivalence
relation induces a partition of disjunct equivalence classes on the set of integers.
For a congruence relation these classes are called residue classes modulo m.
Modulo m there are m residue classes,

[0]={0+k-m|k €]} in which I is the set of integers

[m-1]={m-1+k-m|kel)
A residue class [n] (mod m) can be represented by any of its members, from
which the other members can be generated by:

[n]={n+k-m|kel}

In this paper we represent a residue class [n] (mod m) by the unique integer
R(n) from [n] with 0 <R(n)<m. In binary notation, R(n)gy, this decision
leads to the shortest binary bitstrings for representing the residue classes.

2. The two’s complement representation
In the two’s complement system the integers m from the domain D3 :
2l emg2rt] 2)

are mapped onto [m] (mod 2"). This residue class is represented by R3(m),
which is the smallest non-negative integer in the residue class [m] (mod 2"). The
binary representation of the integer number R3(m) is denoted as R5(m)gp-

151

(The two’s complement domain is slightly asymmetrical, but excluding -2n-!
will give problems with overflow detection in a hardware binary adder.)
In doing so we may write

0<sm<2" -1 &Ri(m)=m & 00--- 005y <R3 (mM)gn <01---1lgy (3.2)
for all non-negative integers in D} and

-2"'<m<-1 & RI(m)=2"+m & 10 <RS(m)gpy <11--- 11y (3.b)
From 3.a and 3.b we conclude that the binary images of non-negative integers
begin with a leading 0 and the images of the negative integers with a leading 1. In
binary arithmetic this bit is the sign bit. However, ‘sign’ stems from the original

integer domain D3. On the residue class level ‘sign’ has no meaning, as all
R} (m) are non-negative numbers.

Adding two numbers m;and m,in D} results in a sum m; + m, with
—-2"<m; +m, <2" -2 “)

The domain of the sum exceeds D3, but lies within D3*'. Within D2*! the
addition of two numbers from D3} is closed. Within D3 there may be an
overflow. The same holds for multiplication: within D2" the multiplication of
two binary n-bit numbers is always possible and within Dj not. The conse-
quence is that in two’s complement arithmetic we should extend the domain, or
there must be an overflow detection. After an overflow the user must correct the
result ‘manually’.

3. The two’s complement addition

Theorem 1 The addition theorem
When m;, m, and m; + m, are in D} then

R3(m; +m,)=R3(m,;)+R5(m,;) (mod m) (5)
Proof
For m; and m, >0, the proof follows directly from 3.a.
For m; and m, <0, the proof follows from 3.b:
R3(m;)+ R3(m;) (mod2")=2"+m; +2"+m, (mod 2m)
=2"+m; +m, 6)
=R3(m; +m,) (mod2")

For the other combinations, m; or m, <0, the proof is similar. O

152

In an n-bit binary adder the addition modulo 2" can easily be implemented by
skipping the highest order carry bit C,, in the n-bit binary adder.

Overflow detection

It can easily be verified that, when m; +m, >271 their sum modulo 2" is
mapped onto a residue class in the domain of the negative numbers. We conclude
that in binary the sign bit of R$(m; + m,)pn (mod m) is a 1. This means that
for non-negative integers m; and m, their sum R3(m;)pn + R3(mz)pn (mod
2n), while adding in an n-bit binary full adder, the carry bits C, and €, are
different. With no overflow C, =C,. So we have two criteria for overflow

detection:

— the sign bit of the result is not as we expect (on the mathematical level);

— the carry bits in the binary adder are different (on the implementation level).
These criteria apply for the other combinations of m; and m, as well.

4. Subtraction in the two’s complement

In two’s complement the subtraction of m; —m, is done by the addition of
m, +(-m,). When R3(m;) and Rj(m;) are given, we need Rj(-m,) in
order to use Theorem 1. For R§(—m,) applies Theorem 2.

Theorem 2 The complement theorem
R3(m)+Rj(-m)=0 (modm) — R3(-m)=2" - R3(m) (modm) (7)

Proof
Simple from (3.a) and (3.b). O

From (7) it follows that _
R2(-m)=2" —Rj(m)=2" —1-R3(m)+1 (mod 2™) ®)
or in binary
RI(-m)pn =2" —1-Ri(m)pn +1 (mod 27)
= Complement(R3(m))+1 (mod 2%)

€))

In determining R3(—m) (9) cannot be applied for m=-2""1 ag -m=+2"" is
not in the two’s complement domain D3. This results in an overflow condition.
Applying (9) to m=-2"" we find R}(-2""). The difference is the modulus
27, as we should expect. Note that in a binary adder/complementer this overflow
condition detects with C, #C,_; as well. O

153

5. Expansion of the two’s complement domain

During repeated addition of (binary) integers the sum may be greater than the
appropriate integer domain Dj. Extension of the domain or an error handling
procedure is necessary. Expanding the two’s complement domain can be done
with Theorem 3.

Theorem 3 Domain expansion
Let R3(m) be the representation of an integer m in Dj. The representation of m
myDatk s

R3*(m)=a, (2" - 2")+R%(m) (10
in which a,_, is the ‘sign’ bit of the binary implementation. On the binary level
this means a k-fold expansion of the sign bit.

Proof
For m =0 it follows from (3.a/b) that
R2*(m)=Rj(m) (1)

Then a,_, =0, so the theorem is true. For m < 0 from (3.a/b):
R (m)=2" + m=2"+2" + m=2" + R3(m)=a, 2" + R} (m) (12)

Thus

R3*'(m)=a, ;2" + R%(m) for all m € D} (13)
Repeated application of (13) proofs the theorem by induction. O
Conclusions

The two’s complement addition and subtraction can be mapped on a set of
residue classes modulo 2". It makes theorem proofing and algorithm verification
very easy. Overflow is not an integral part of modulo arithmetic. However, on
the binary implementation level the test for C, #C,_; detects any overflow
condition. (Note that in pipelined adders these carries may not be seen at the

same pipeline level!)

So far the conversion of R3(m) into #*|m| has not been discussed. The
conversion procedure can easily be derived from Formulae (3.a/b):

a,,=0 & |[m|=Rj(m)=m (14.a)

a,, =1 & |m{=2"-~R3(m) (14.b)

154

On the binary level the conversion by (14.b) may be implemented by taking the
complement of R5(m)+ 1. O

6. Multiplication

Two’s complement multiplication of integers in Dj must be done in D3" or in
D} with an overflow detection. For multiplication in D3" Theorem 4 applies.

Theorem 4 The multiplication theorem

R3"(m, -m,)=Rj3"(m,) R3"(m;) (mod22") with m;,m, €D} (15)
Proof
The proof can easily be found by verifying the theorem for all four cases of

positive and negative integers in D3 . O
Example
With m, = +3 and m, =-6 we find

R3(+3)pn =001 1y — RE(+3)= 00000011,

R3(=6)pn =10105y — RE(-6)=111110104,

Multiplication of the binary 8-bit representations results into

0000001 1
PRSI ELTG PRpITR
'00000000
0:0000011

001000000
010 8,0 0.0 1 1
0000001 1
00000011
00000011 1

000000 1.1

000000101 1101110+
!

skip mod 22 'i result is RA(~18)y

A drawback of direct multiplication of R3"(m,) and R3"(m,) is that the
multiplication in a binary multiplier has 2n levels or steps in a series-parallel
multiplier. In the well known Booth algorithm [Booth, 1951] the same multipli-

155

cation can be done in n steps. But Booth multiplication needs a number
conversion in advance. Our algorithm implies faster in software, because of no
number conversions.

For completeness we give Theorem 4.a. The proof is for the reader.

Theorem 4.a The multiplication theorem
R3*™(m; -m,)=R*™ (m,)-Rgf’“ (m,) (mod2™™)

with m; e D} and m, e DY (16)

7. Other complement systems

In the past other complement systems have been in use. One of them is the one’s
complement. In the one’s complement all calculations are done modulo 2™ — .
The one’s complement theory develops in a similar way as we have shown for
the two’s complement. However, the one’s complement has some drawbacks and
nowadays the two’s complement is most frequently be used. Reasons are the
twofold representation of O in the one’s complement, because of the second
representation of Rf'(0)=11---11gp cannot be detected in a binary full adder or
ALU. Domain extension also has some serious drawbacks while unplememmg
multiplication and division in hardware.

8. Conclusions

There is a one-to-one mapping between two’s complement arithmetic and the
modulo 2" arithmetic. On the modulo level theorem proofing and algorithm
verification is much simpler. The result is a simpler verification of implementa-
tions in hardware and software.

Literature

1. A.D. Booth and B.A. Wooley, A Two's Complement Parallel Array Multipli-
cation Algorithm, IEEE Trans. on Computers, Vol. C-22, 1973, pp. 1045-
1047.

2. G.R.Dattatreya, A systematic Approach to Teaching Binary Arithmetic in a
First Course, IEEE Trans. on Education, Vol. 36, Feb. 1993, pp. 163-168.

3.J. Hartmanis and R.E. Steamns, Algebraic Structure Theory of Sequential
Machines, Prentice-Hall, Englewood Cliffs, N.J., 1966.

4. S. Sklar, 2's Complement Arithmetic Operators, Computer Design, May

1972, pp. 115-121.

156

	150
	151
	152
	153
	154
	155
	156

