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Abstract

This paper is focused on the effective computation of an optimal automatic
segmentation procedure. The latter can be applied in speaker-independent isolated
word recognition using Hidden Markov Models. First we discuss the segmentation
scheme based on additional information from the vector quantization stage. Then an
effective algorithm for iterative calculation of the segment boundaries is presented.
The algorithms are tested on a speaker-independent Bulgarian data base and results
are reported. '

I. Introduction

During the last few years vector quantization (VQ) and hidden Markov models
(HMMs) have been gaining increasing popularity in speech recognition systems over
alternative approaches like -dynamic time warping (DTW) and artificial neural
networks (ANN) [1,2,3]. Training of HMMs is essentially a search for an optimal set
of coefficients calculated on the basis of the training data. Starting from some initial
parameters, an iterative optimization procedure can be applied using the Baum-Welch
or the Viterbi reestimation algorithm. This procedure leads to g set of parameters
which yield a local maximum of the probability P(OIS). In general, however, a
number of different local maxima exists and the final result depends on the proper
choice of the initial parameter values. Different algorithms have been developed for
intelligent selection of this starting set of coefficients [4-7]. In [4] an alternative
method is put forward which uses elaborate statistical analysis from the vector
quantization stage to calculate initial model parameters, reflecting the global
maximum of the probability function. The authors of the current research have aimed
at proposing an effective algorithm for computation of the segment boundaries and
obtaining some experimental results in support of the method discussed.

IL. Training of HMMs and segmentation of the training sequences

In this section the segmentation procedure from [4] and its place in the overall
HMM training process are briefly explained. Applying vector quantization to feature
vectors results in a loss of information [8]. The representation of a feature vector can
be improved by using more information from the VQ processing: defining the closest
L codebook vectors instead of only the nearest one to the analyzed vector. This
supplemental information can be used for optimal segmentation of the training
utterances resulting in a better initialization and optimized HMMs.
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We consider' to have a sequence of T speech frames {oy, 0,, ..., or} with
corresponding descriptions (coefficient vectors: spectral, LPC, cepstral, etc.) {0, O,,
-, Or}. This input sequence must be divided into N consecutive segments (N<T),
where N is the number of states in the Markov model, and then the frequencies of the
codebook entries in the individual segments and the lengths of the segments are used
to calculate the initial values of the probability coefficients a; and bj(k) for a first
order HMM.

The segmentation of an utterance with T feature vectors (T frames) is based on
the definition of a cost function C (named total distortion [4]) for a given set of
segment boundaries ko, ki,..., ki, ..., ky , with k=0 and kn=T. For ezch individnal
segment an intrasegment distortion is introduced which reflects the variations among
the vectors within the segment. The optimal boundaries are chosen among all
possible sets so that the total distortion C is minimized. The analysis results prove to
better significantly if an elaborated vector distance measure is used, based on the
quantization information. Let 7, = {n(1), m(2), ..., m(M)} be the resulting order from
the VQ of a given feature vector y,, where m,(1) is the index of the closest codebook
entry, m(M)—of the most distant and M is the codebook size. -Using these
designations the distance d(s,t) between two feature vectors ys and y, is defined as

L

dis,t)= Y o,.n (1) , L2M , (N
A=1

where 7' denotes inverse permutation with m(m)={1,2, .., M}, wyis a set of
weighting factors and L is the number of positions that are considered in the
algorithm (i.e. all codebook entries are sorted in a descending order according to their
proximity to the analyzed feature vector and only the closest L are considered in the
computation of d(s,t)). Without the weights , , d(s,t) would not take into account the
different orders of the first L entries. In order to avoid the time and memory
consuming sorting of all codebook indices only a limited number of L, positions
can be used which leads to "= {rt;'(1), ..., Lyay, Lumax,...}.The local distortion D(k;.
ki) in the i segment Si=[k;.;,k;] is given by a summation over the mutual distances
between all vectors in the segment,

D(k,_, k)= Y. d(s,t) . ()

s,tes, )
Finally, the total distortion (3) is calculated as a sum of the local distortions in
all segments and the assignment is to reach such a set of the model parameters which
minimizes function (3), i.e. C=C s, .
N

Cc=Y D(k_,,k,) 3)
i=1

II1. Effective computation algorithm and experimental results
The algorithm discussed is aimed at optimizing the computation of D(k;.1,k;)
and C. Calculations of all d(s,t) for 1 2 s 2 (T-1), (s+1) 2t 2 T, cannot be avoided so
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they are separated in a preliminary procedure and for the case of a 40-frame sequence

their number is
. nl , 40
G :m!.(n—m)! -7 C,,,:m—
To avoid repeated calculations a restriction of s<t is imposed which does not
change the essence of the algorithm and as can be seen the number of elementary
vector distances is comparatively small. Let us view a simple division of a T-frame
utterance into two segments, assuming the requested boundary to be k, i.e the first
segment contains vectors 1+k, and the second (k+1)+T. The problem is to find the
ontimal k leading to the minimum of the total distartion C. To make the algorithm
ultimately fast we aim to find iterative formulas both for D(ki.;,k;) and C. Let us
introduce two auxiliary matrices
sum,(x,t) - contains the sum of all d(s,t) forx 2s2 (t-1) , s=var
sumy(s,y) - contains the sum of all d(s,t) for (s+1) 2t 2y | t=var .
Both matrices adhere to the general conditions 1 2 s 2 (t-1), (st1)2t2 T and
the supplementary conditions s 2 X, for sum, , and t 2y, for sum, . With regard to these
designations the intrasegment distortions are defined as:

D, = > d(s,1) 1<s<(t-1),(s+1)<t<k

stel,

780 ) 4)

D, = > d(s,1) k+1)<s<(T-1),(s+1)<t<T 5)

sitely
(2) _
&= le N D2k
By induction :
k
Dllnl = le + ;d(S,k+l) = le + Sllll]l(l,k+1)
T

Dt :DZ«_ 2d(k+1,t):D2k—sumz(k+1,T) (6)

t=k+!

D

k T
G =G+ 2dsk+D- Ydk+1,6= o +sum, (1, k + 1) — sum, (k + 1,T)
s=1

t=k+2
Using the obtained inductive formulas all possible C can be calculated and
a boundary k defined, where C=Chin . Analogous reasoning may be applied when
working out the formulas for a 3-segment division, where the main difference is the
variation of both boundaries k; and k; between the three segments. On figure | the
surface C(ky,k,) is shown, calculated for an example utterance of the word "chetiri",
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Fig. 1
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The formulas worked out for C* and C),, may be generalized for the

division of a T-frame sequence into N segments with an optimal set of boundaries
{ko, ki, ko, ..., ki, ..., knp, kn}. The boundaries k=0 and kn=T are only formally
assumed and a given segment S; starts with the (ki +1)™ vector and ends up with the
k™ The main idea here is that a variation in the intrasegment distortion D; is
possible only if one of the boundaries k; or k.| is changed, and the unilateral
alteration of k; affects D; and Dj,;, but does not influence the remaining D; for j#i and
j#(i+1). With regard to these designations the inductive formulas for the case when
only k; is changed can be expressed as

Dikl,kl,...,ki,.“,k 1 Dikl,kZ,...,

N- "iAl""'kZ\~1

IZ d(S,kl)

k

i+
D@ +1) 5 = D(i+ l)kl‘l\Z,..A,ki_],..A,k - X d(k,t)

Ky Ky

Nl =k, +1
Djkl,LZ,A..,ki,.“,kN% = Djkl,k2,..,.ki_1,,..‘k!\.71 =i, j=+1) (7
kl;l l‘i+l
cv =C™ + X d(sk) - T dk,t)=
Kpokgron ke ky Kpokgrenk ook g bk | x5 1
—_c™ ; -
= C“p“zv--"‘i I + suml(l\i_1 + l’ki) Sum2(ki’ki+1)
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Generally, all above calculations may be expressed by an all-round
computation of the N-dimensional surface C. In practice, however, the number of
operations and memory required grows intolerably high. It becomes clear that the
algorithm proposed is impractical in this form for more than 5 segments which
instigated a new research for a faster approach directly leading to the global
minimum of the surface C. Profound analysis of experimental results from
segmentations into 2,3,4 and 5 segments led to the conclusion that on each step
(adding a new segment) the boundaries of all segments are kept unchanged, except
for the one that has had the greatest intrasegment distortion and optionally of one of
its neighbors. .

On this basis a new iterative algorithm was developed. It starts with a three-
segment division of the input sequence and at each step a new segment is added,
adhering to the minimum of the total distortion C. In the beginning of each iteration
the highest intrasegment distortion D; belonging to the segment S; is defined. The
analysis is conducted with two 3-segment divisions: one for the segments Si1LS;
(within the boundaries k;»,k;) and the other for Si,Sisi(ki1,ki+). The final iteration
decision is assumed to be the one (of the two) which yield to a lower total distortion
C. The speed of this algorithm is much improved by the difference in the
computational costs of a N-segment and two 3-segment divisions for N>3.

Segmentation analysis
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Fig. 2
_ On figure 2 results obtained through the new algorithm for a 5-segment

division of the word "pet" are shown. Actually, the derived algorithm proves to give,
though rarely, better but different results from the global minimum of the surface C.
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So it turns out that the best matching of speech and segments is obtained not through
a search of the very minimum of the total distortion but of the most heterogeneous of
all current segments and a proper split as described above. ]

Utilizing the discussed algorithm a speaker-independent speech recognition
system based on VQ and hidden Markov models was trained. The recognition error
for a set of 10 isolated words is in the limits of 5-10%, where the lower recognition
rates are due mainly to flaws in the speech-pause classification procedure. In the case
of a manual elimination of the pauses the system error drops down to below 5%.

IV. Conclusion E

A computational algorithm is put forward, based on the properties of
mathematical induction and representing an alternative approach for calculation of
the segment boundaries in the training utterances. The experiments conducted show a
remarkable increase in the recognition rate. One of the main advantages of the
method is the possibility for automated training of hidden Markov models. It should
be noted that the obtained initialized HMMs are optimized in accordance with the
maximum likelihood criterion for the training data set and require no further
processing. Though research was conducted for the purposes of speech recognition,
the algorithms discussed may be applied in any HMM application where optimal
segmentation is needed. It may be concluded that the experimental results confirm the
effectiveness of the method [4] and lay the ground for new research for additional
improvements in the algorithms proposed.
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