Design of reusable VHDL models

Vassiliy Tchoumatchenko, Tania Vassileva, Borislav Korchev*, Alain Guyot**
*Technical University of Sofia, Department of Electronics
**TIMA/INPG, Grenoble, France

Abstract .

The paper includes a brief overview to acquaint the reader with importance of design reuse, as well as a
detailed discussion on how generics have been used in adders description, promoting models reusability. A
parameterised structural VHDL models of fast prefix adders have been written using gencrics.

Proposed models are technology and tools independent. Synthesis has been carried out by Synopsys and
Galileo tools. Different input operand size adders have been implemented targeting several FPGAs and stan-
dard cell technologies

1. Introduction

Today’s deep submicron process technology affords designers the unprecedented
opportunity to integrate complete system functionality on a single IC. Success with
system on chip requires a completely different approach to design. Managing the com-
plexities of the design environment and improving engineering productivity became
critically important. Incremental and hierarchical design techniques have become in-
creasingly important. Breaking a design into manageable segments allows to put more
engineering resources into the design and to exploit concurrent software and design
techniques. Further, to increase the productivity of the total design process, the system
level design may be altered to accommodate available intellectual property (IP) blocks.

Design re-use is the only way to dramatically reduce system-chip cycle time, and
to amortise the development costs on each unique block over multiple designs. Just
like physical components of the PCB world, systems on silicon use on-chip virtual
components. These design elements consist largely of “hard” and “soft” cores.

Hard cores offer the greatest potential for functionality, density and productivity.
They provided a pre-designed, highly optimised, and completely characterised, fixed
physical layout and are incorporated into ASIC design in a manner similar to standard-
cell library element. The fixed form and function, however, make optimisation of hard
cores for performance or density difficult.

Soft cores provide implementation flexibility. They are in HDL form and require
synthesis into the target ASIC technology. For features that are commonly customised,
VHDL generic parameters can be used that enable designers to select during synthesis
data bus width, numbers of bits in a data path (e.g. bit-width of an adder, multiplier or
ALU) and width and/or depth of a RAM or ROM. Such parameterisation eliminates
the need to modify the actual design source and any subsequent re- venﬁcatlon while
~ at the same time allowing needed customisation.

A parameterised structural VHDL models of fast parallel prefix adders have been
written using generics. The paper includes a brief overview to acquaint the reader with
inportance of design reuse, as well as a detailed discussion on how generics and gen-
erate statements have been used in adders description, promoting models reusability.

209

2. The Importance of Design Reuse

Design reuse is quickly becoming the primary means for reducing design time.

The essence of reuse is the capture and codification of knowledge. There is no way
that engineers can reuse an entity without knowing its precise function and the pa-
rameters under which it operates. Reuse did work its way into chip level design in a
standard cell design methodology. However, there is still more to gain through wider
use of megacells and functional blocks. Furthermore, there is still vast potential for re-
use at different levels of design abstraction.

The ability to reuse individual or multiple blocks from old designs increased reli-
ability and productivity. Using VHDL virtual component allows to reduce amount of
time and bugs introduced by data re-entry. Parameterised VHDL models minimise re-

_work, maximise reuse and optimise the choice of architecture for the specific applica-
tion. Incorporating variable word length they ensure more design flexibility.

The functionality during synthesis will accommodate increased design flexibility by
providing a high-level technology-independent code that designers may use to param-
eterise, or modify.

3. Keys to productivity

Recently the importance of megafunctions in the automatic synthesis environment
has been clearly stated. The appropriate use of megafunctions reduces design time, in-
creases revenues by getting to market sooner, and gains time to focus on differentiating
features. Megafunctions are available from silicon providers, who specialise in func-
tions optimised for their own architectures and independent developers, who have ex-
pertise in functions for specific applications,

Megafunctions are called through instantiation or inference in VHDL synthesis tool.

When using synthesis tools, designers must keep in mind several considerations to
achieve the expected results. The synthesis results strongly depends on the specifica-
tion of correct optimisation constraints and the description style of the synthesis input.
However, many digital systems contain frequently occurring design parts, mostly data
path components like adders, counters etc. The synthesis of such components often
leads to unacceptable performance. Schematic based design may provide better solu-
tions than the synthesis from formal hardware descriptions. A way to overcome these
problems is the use of automatic module generation. The generation algorithims base
on proved designs, their quality is guaranteed by the applied expert knowledge of the
algorithm developer. Because of the simple specification needed and the short genera-
tion time, the design effort is reduced significantly and the generatlon result is inde-
pendent of the designer’s knowledge.

In case of technology-specific module generation the algorithms imply some infor-
mation to get the best results on the desired target architecture, so one module gen-
erator system is required for every technology or group of devices with similar proper-
ties. Especially for FPGA and CPLD architectures, this leads to a great development
effort. To support a wider range of device families, a new approach is needed.

210

Our goal was to develop a design methodology and capability that permits and
promote maximum reusability of megafunctions by using structural VHDL models.
The models are parameterised in order to incorporate variable word length for apph-
cation flexibility. Proposed models contain no technology dependant information thus
facilitating design migration.

4. Design of reusable VHDL models

The fast prefix adders were chosen because they have a significant number of ap-
plication. The addition is the most frequently used arithmetic operation, involved not
only in simple addition, but also in more complex operations like multiplication and
division. Fast adders are used in the ALU, the floating-point unit as well as for address
generation in case of memory access.

4.1 Using generics

Capturing a complex function in a VHDL description provides technology and ven-
dor independence for its implementation. Models can also be made independent of an
instantiating architecture, i.e., they can be parameterisable. In VHDL, this is accom-
plished through the use of generic parameters (generics). Generics are a mechanism
used to pass information such as delay times, load capacitance, word lengths, number
of inputs, etc., to an instance of an entity, thus allowing much more application inde-
pendence and, therefore, code reusability. '

Generic constants, such as number of inputs, are declared in entity section of the
models. Figure 1 illustrate how generics and variable length vectars are used to de-
scribe the inputs and outputs of parameterised adder model.

A B
A N
f

” -- Parameterised model declaration
Precondition Block
entity SKLANSKY is

1 generic (N : integer; M: integer) ;
port |[(a,b : in std logic_vector (N-1 downto 0);
cin : 1n std Togic; cout: out s-d =0¢1 &

S : out std logic vector (N-1 downto 0)—)I;

Pal I Prefix
ralle end SKLANSKY;

Carry Generator Block

]

Final Summation
Block

-- Parameterised model instantiation

Paralle! Prefix Adder

U0: SKLANSKY generic map (N=>N, M=>10g2 (OPSIZE) +2)
port map (a=>a, b=>b, s<>s, cin=>cin, ccut=>cout);

Fig.1. Adder's operands and resuit size parameterisation using generics

211

4.2 Using generate statements

Like the input-output port declarations, the internal adder architecture also depend
on:operands width. In structural VHDL description stile this dependence is accounted
for by using for-generate and if-generate statements. Figure 2 shows the schematics of
8-bit Sklansky adder and part of the VHDL code used to describe the Carry Generator
Block. The bulk of the carry generation array is created by generate loops (GEN4,
GENS) which instantiate GP and G components (U3, U4). The formation of the array
(GENG6) in controlled by the function bit_is_one(ij), which returns Boolean value
“true" when the j-th bit of / 1s "1". This follows from the observation that in the i-th
column of the array "o0" cells should be placed in nodes which correspond to "1" in the
binary representation of i. For example, in the 5-th column of the array the cells are
placed on the first and third rows since the binary representation of 5 is 0101.

i

N 0
a(?) M7) aff) h6) a() K5 afd) htd) agi) BN 4f2} h(2} afl) b1}y a? hy
cin
PRE [} [ere] CPRE 0
<g16)(0) <x(4)(Vj ca(2)(0) PO,
€pl6)(v) cpl4)(0} <p(2M) ®(U Y
| GpP G
- cR(0)(1) <Ri4)(1) & 211)
cp(o)I) epia)(1) cp2ul) cathih {epiyisj
GP [G ' i
P
cpidi2) R332} CRN2)2) <R1)2) |ep(0)(2}
cout cpIO)3;

<gI9)(3 Ve L Lal A c(2)(3)] RIO)3)
[xro | [xRz | XRz] M

(7) sth, 53 54 3 (2 (1} (0

GEN4: for i in 0 to N-1 generate
GENS: foxr j in 1 to M-1 generate
GEN6: if bit is_one(i,j-1) generate

GEN7: if j > log2(i) generate
U3: 6 port map (pa=>cp (i) (j-1), ga=>deg(i) (3-1),
gb=>cg(i-i mod 2**(3-1)1) (3-1),
gout=>cg (i) (3}));
end generate; '

GENB: if j <= log2(i) generate
U4: GP port map (pa=>cp(i) (j~1), ga=>eg(i) (j-1),

pb=>cp (i-i mod 2+**(3j1)1) (3-1),
gb=>cg (i-i mod 2**(31)1) (3-1),

pout=>cp(i) (j), gout=decg(i) (3));

end generate;

end generxate; R S e s e
GEN61: if not bit is cme(;L - 1) generate

cp (i) (J)<=cp(1) {3- "1 ;

eg (i) (j)<=eg(i) (3-1);

Fig. 2. Schematics and parameterised description of 8-bit Sklansky adder

212

5. Examples

We have done synthesis to gate-level on several cases. Several fast adders archi-
tecture with 8, 16, 32, and 64 bits were synthesised using Synopsys Design Compiler
and FPGA Compiler targeting Xilinx 4000, Xilinx 5200 and Altera Flex8000 FPGA
families as well as Atmel/ES2 ECPD10 standard cell library. A gate-level circuit of 8-
bit adder synthesised from the Sklansky parameterised model is shown on fig.3.

[]
-
= o
o—H=5-
—r>—
S - oy b H=Dn
——] =
- —r— — = e s
- 1% 4 ?
——] I
[. = o= ==]

Fig.3. Gate-level circuit of 8-bit Sklansky adder (ECPD10 target technology)

Synthesised adders were compared in terms of delay and circuit area (fig.4).
Evaluations have been made according the synthesis tools estimations. The Synopsys
Design Ware adder generator DW0!_add is used as a reference implementation. The
performance of the circuits, produced by the proposed VHDL models, is comparative
and in most cases better that the performance of structures synthesised by DesignWare
module generator.

Summary

Reducing the cost of designing very large integration (VLSI) microcircuits is a con-

" tinuing objective of the designers. Design re-use is the only way to dramatically reduce

system-chip cycle time, and to amortise the development costs on each unique block
over multiple designs. Parameterised models promote re-usability. To use them for

. different applications the operands size should be specified by giving a value to only

one parameter.

213

Delay vs N (ecpd10) Area vs N {ecpd10)
(G 0 5 PE T e AR) —
1200000
130 |
1000000
2 no , 800000
z s
K) <
g o0 600000) ///,// oA
o
>
400000 ‘//’ .,///
.
7.0 = T
200000 ‘_,///> =
50 . 0 y
8 16 N 32 64 8 6 N 32 64
Delay vs N (XC5200) Area vs N (XC5200)
600
500
7 g
z o 400
z = 3
) 2 300
8 &
200
100
1
10] 0
8 16 2 64 8 16 32 64
N N

Fig.4. Comparition of Sklansky (SKL), Han-Carlson (HC), Kogge-Stone (KS) and
DWO01_add (DW) adders for two technologies — standard cell (ECPD10)
and FPGA (Xilinx XC5200)

Parameterised VHDL models for fast parallel prefix adders was developed. The
models are synthesis-ready and can be included in larger designs. They permit synthe-
sis of Sklansky, Han-Carlson and Kogge-Stone adders architectures for different target
technologies and any input word lengths.

Proposed models are technology and tools independent. Synthesis has been carried
out by Synopsys Design Compiler, FPGA Compiler and FPGA Express and Galileo
Exemplar. Different input operand size adders have been implemented targeting sev-
eral FPGAs and standard cell technologies (Xilinx 4000, Xilinx5200, Altera Flex8000
and ES2 ECPDI10 standard cell).

References

{11J. Buurma, Virtual Components.and the Well-Connected Engineer. ED,-pp. 53-56,-January 6, 1997
[2] M. Aberbour, A. Houelle, H. Mehrez, N. Vaucher. A. Guyot. A Time Driven Adder Generator Architec-

ture. in Proc. IX IFIP International Conference on VLSI. VLSI'97, Gramado, Brasil, August 1997

{3] T.Vassileva, V. Tchoumatchenko, V. Shishkov, A. Guyot, High-performance adders synthesis using effi-
cient macro generator, Proc. European Conference on Circuit Theory and Design, ECCTD'97, Buda-
pest, Hungary August 1997

214

	209
	210
	211
	212
	213
	214

