A microkernel for multitasking operation mode
on the base of Motorola 68hc11 microcontroller

Eng. Boyko Baev Petrov - Assistant Professor

Eng. lordanka Vassileva Rouskova - Assistant Professor
Department of Electronics and Electronic Technologies

Technical University - Plovdiv Branch

E-mail address: bpetrov@tu-plovdiv.bg jvr@tu-plovdiv.bg

Introduction .

The effective trade-off of a good hardware solution and a
multifunctional software is of great importance to the creation of
microconroller systems.

Practice shows that microprocessor systems development time is
determined mainly by the process creation and testing for specific software
requirements of speed and costs for the systems as @ whole.

In order to shorten the development time of a given application,
specific or standard program modules are most frequently used, such as:
MCX, Buffalo arithmetic software libraries ete. The system engineer should
do the particular work - to determine the conditions and the order for
different application activations. .

Now the method of embedded kernel is widely used. The specific
applications features are provided as different user tasks. Their activation, the
data exchange and the synchronization between tasks are provided by the
operating system kernel. This article proposes:

- to divide user tasks into main and background tasks;

- to structure main user tasks with minimized execution time;

- to structure a microkernel with embedded sub-system activating main
tasks of fixed priority.

‘Description of the proposed user tasks' division and of the main task
Structure '

There are three types of user tasks structures [1] - linear, cyclic and
combined(fig. 1):

- linear - a task with one input and one output, without internal
branches;

- cyclic - a task with one input and one output, with a waiting cycle for
incoming activating condition .

- combined - a task with one input and one output, in which a waiting
cycle is included in the lincar structure.

The use of cyclic and combined structures user tasks activated in real-
time operating system seems to demand:

113

- multitask mode for each task in activated, blocked (wait-state) or
passive state.

- information flags - to indicate the current state of each task.

The structures of linear and combined type aren't stated clearly enough
to define those moments of time when the program modules activated by
special interrupt functional blocks are exccuted. It is not easy to give a
parametric description of the current state , which makes the decision making
process for the next activation also very difficult.

In order to overcome these disadvantages a division of user tasks to
"main" tasks and "background" tasks is proposed. The main tasks are program
modules activated by the operating system. An instruction "return to the

_operating system" is used as an end of the program module. Background tasks

are program modules, activated only if a specified event occurs. This event
should be identified by a special integrated circuit or by an element of the
microcontroller architecture (i.e. interface interrupts, analog-digital
converters, keyboard etc.). A return from interrupt instruction is used for the
end of the program module.

The linear, cyclic and combined structures can be used for description of
each main tasks along with the current state description. The event control
structure (fig. 2) will be more suitable for this purpose. The structure proposed
here: ' ~

- can work with its own user stack detached from the system one, also
detached from all the rest of the tasks;

- includes an instruction for system interrupts authorization;

- executes the main operation of the user task after doing a current
check-up - otherwise it is transferred back to the operating system;

- uses an introduction for program interrupt as an end of task.

It should be noted that the description of the principal activity in a user
task include a branched or cyclic algorithm without limitation of the number
of conditions or cycles included. The only constraint concerns the requirement
that for each task no block for check-up of an activating or deactivating
condition of a separate program module should be included. If it is really
necessary to include such a block - then it should be detached as a separated
main task. The advantages of the proposed structure compared to the linear,
cyclic and combined structures are:

- the opportunity to work with a task-owned stack and the use of
temporary data storage instructions;

- the formation of a free execution zone created by the instruction for
system interrupt enable and by the instruction of program interrupts(SWI).
When the task execution is located in this free zone all the background for the
operating system tasks can be executed;

114

- in case of a non-executed activating condition, the control i's"giv‘e'n Bac'k =
to the operating system for activation of the next main task, which conditions =
the minimal execution time for the task(the cycles for waiting for a condition
are absent); ‘

- only one status bit is needed for the current state task description.

Structure of a micro-kernel with built in sub-system for task activation.

A structure of a microkernel for control of user task executions is shown
in fig. 3. In order to provide a periodical transfer of the control to other user
tasks this part of the operating system is designed to work with a real-time
interrupt sub-system(RTIS). This interrupt is an element of the architecture or
Motorola's single chip microcontroller M68HC1 1c.

The methods for obtaining and transferring back the control from and to
main tasks envisaged here are - main task activation from the beginning and
reactivation of a main task from the point of its interrupt request coming from
the RTI sub-system. ~ Under the terms of these methods for activation the
return back to the operating system will be respectively- return after the end of
a main task and going out from the main task after an interrupt request
execution, coming from RTI sub-system.

It is obvious that a main task should be interrupted by a background
task. During the execution of a background task, other interrupts may not be
- executed. After the end of the background task the control is transferred back
to the location of the interrupt in accordance with built-in automation of every
microcontroller. In this manner the kernel needs only two points for input
and only two points for output. '

When an activation should come by the first input point (the previous
task being completed to the end) the kernel has to do the following operations,
till a decision to activate a new main task is made :

1. To define the number or the current task;

2. To mark the completed task with a "marker" validated for the .
following new activation - from the beginning.

When the activation is done by the second input point (the main task is
interrupted by the real-time interrupt system RTI) the kernel has to complete
the above-mentioned tasks, till a decision to activate a new main task is made:

1. To store the context (values of common-use registers) of the
interrupted task by saving the content of task-owned stack.

2. To determine the number of the current interrupted task.

3. To mark the interrupted task with a marker valid for the next new
activation - "by continuation". T '

After execution of these operations and for any kind of input point the
kernel is ought to:

115

1. Determine the number of the next main task (in accordance with a
fixed, dynamic or any other priority).

' 2. To check-up the status of a new-coming task - determining if it is
from the beginning, or by continuation.

3. To activate the determined task according to its current state.

In case of activation "from the beginning" - the control is transferred to
the start point of the determined main task. In case of activation "by
continuation” the control is transferred to the point of interrupt, after restoring
the main task context (the content of common-use registers at the moment of
interrupt). -

The described microkerne! can support only two possible conditions for
_the user tasks - "completed" and "interrupted" and can work with its own stack.
" It has precisely two input and two output points. It requires two operating
conditions - available RTI sub-system (depending on the single-chip
microcontroller) and an instruction for program interrupt SWI (depending on
the system of commands). If an instruction for software interrupt is not
available in the chosen microcontroller chip(different from M68HC11c) it can
be replaced by a similar one from the set of instructions.

The proposed structure of tasks allows a realization of multitask kernel
with fixed task priority. A real microkernel program, written in Assembler
language in a volume of 280 bytes has been used by the authors. ;

The experiments with this microkernel have been done with a program
with nine linear and cyclic structure tasks executed for a period of time from
16 psec to 18 msec. The interrupts used from the available architecture of the
microprocessor M68HCl11c are-software interrupt instruction with vector
SWI and the real-time interrupt from a special timer (by a different vector)
RTL
Conclusion

The main advantage of this approach for interrupt organization is the
avoiding of a possible " begin to cycle” and the definition of a time interval for
background operation, thus the task can be activated by special interrupt
requests, generated by external devices.

This solution can be implemented for any type of microcontroller, whose
architecture is organized by similar interrupts and instructions.

References:

LAykanuyeBcku = M. - "Cucmemno _npozpamupane 3a egrouunoBu
mukpokomnlompu"-Texnuka,Cous, 1993. ‘

2.Anzinger G.The HP-RT Real-Time Operating System - HP-Journal, August
1993.
3.Motorola single chip microcontroller MC68HC11A8 User Manual.

11

116

Beginning ' Initialisation Initialisation
Waiting for Event 1 ™| Waiting for Event 1
End o
Waiting for Event 2
Linear Structure Cyclie Structure
or End
Combined Structure
Fig. 1
Beginnig

Y

STACK loading
with task TASK_*

!

Permission for
interrupts

: SWI vec - RTI vec
Y Y
STACK loading for ARTOS 3 Keepipgoommdtheusert_ask

o of User Stack Paint

Dedision making which number § n?nme Loading of the
| of the next tasks to be exeauted § . User_Stack Pointer
: for the current task

V START from BEGIN Y START from BREAK
0000000000000 000000000000000000000000000
Start from
X Start from
begin of the Task_1 begin of the Task_n

RTI . + : +

— ™ STACK loading for Task_1 —"— STACK loading for Task_nfj
s Interrupt enable instruction W S Interrupt enable instructio
: Check of the starting ‘ Check of the starting
§ NO yet conditions i : NO yet conditions
y YES N
: : YES
RT] e : RTI *
- -
f "TASK_1 «.
= : TASK_N

RTY EXECUTION ; RTI EXECUTION

R B]
> swi > swl

to the RTI_vec

to the SWI_vec
—— e P

	113
	114
	115
	116
	117
	118

